Application of p and n-Type Silicon Nanowires as Human Respiratory Sensing Device
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrical Characterization
3.2. Respiratory Sensing
3.3. Respiratory Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SiNWs | silicon nano wires |
MACE | metal assissted chemical etching |
PZR | piezoresistance |
Al/p-SiNWs/Al | p-type SiNWs with Al electrodes |
Al/n-SiNWs/Al | n-type SiNWs with Al electrodes |
Au/p-SiNWs/Au | p-type SiNWs with Au electrodes |
Au/n-SiNWs/Au | n-type SiNWs with Au electrodes |
NB | Normal Breathing |
RB | Rapid Breathing |
DB | Deep Breathing |
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Holm, B.; Óskarsdóttir, M.; Arnardóttir, E.; Borsky, M.; Mallett, J. Automatic detection of obstructive apnea on an individual breath basis. Sleep Med. 2022, 100, S239. [Google Scholar] [CrossRef]
- Biedebach, L.; Óskarsdóttir, M.; Islind, A.; Arnardóttir, E. Representation Learning for Anomaly Detection in Sleep Identifying Pediatric Mouth Breathing through Convolutional Autoencoders. Sleep Med. 2022, 100, S271–S272. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Guo, C.Y.; Zhang, X.F.; Cheng, X.L.; Huo, L.H.; Wang, T.T.; Xu, Y.M. Er2O3 nanospheres with fast response to humidity for non-contact sensing. Rare Met. 2023, 42, 56–63. [Google Scholar] [CrossRef]
- Bošković, M.V.; Frantlović, M.; Milinković, E.; Poljak, P.D.; Radović, D.V.; Stevanović, J.N.; Sarajlić, M. Self-Powered Wearable Breath-Monitoring Sensor Enabled by Electromagnetic Harvesting Based on Nano-Structured Electrochemically Active Aluminum. Chemosensors 2023, 11, 51. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Zhou, S.; Huang, L.; Wang, Y.; Li, X. Fiber-optic meta-tip with multi-sensitivity resonance dips for humidity sensing. Sens. Actuators B Chem. 2022, 352, 130957. [Google Scholar] [CrossRef]
- Guntner, A.T.; Abegg, S.; Konigstein, K.; Gerber, P.A.; Schmidt-Trucksass, A.; Pratsinis, S.E. Breath sensors for health monitoring. ACS Sens. 2019, 4, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, N.; Jamalabadi, H.; Tavoli, F. Breath acetone sensors as non-invasive health monitoring systems: A review. IEEE Sens. J. 2019, 20, 5–31. [Google Scholar] [CrossRef]
- Arakawa, T.; Dao, D.V.; Mitsubayashi, K. Biosensors and chemical sensors for healthcare monitoring: A review. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 626–636. [Google Scholar] [CrossRef]
- Yadav, S.; Tripathy, S.; Sarkar, D. NEMS Sensors Based on Novel Nanomaterials. In Advanced MEMS/NEMS Fabrication and Sensors; Springer: Berlin/Heidelberg, Germany, 2022; pp. 133–185. [Google Scholar]
- Baraban, L.; Ibarlucea, B.; Baek, E.; Cuniberti, G. Hybrid silicon nanowire devices and their functional diversity. Adv. Sci. 2019, 6, 1900522. [Google Scholar] [CrossRef]
- Raman, S.; Sankar, A.R.; Sindhuja, M. Advances in silicon nanowire applications in energy generation, storage, sensing, and electronics: A review. Nanotechnology 2023, 34, 182001. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.H.; Yoo, J.Y.; Jo, M.S.; Yoon, J.B. Geometrically structured nanomaterials for nanosensors, NEMS, and nanosieves. Adv. Mater. 2020, 32, 1907082. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.C.; Dincer, C. Wearable breath analysis. Nat. Rev. Bioeng. 2023, 1, 80–82. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, K.; Li, H.; Chen, D.D.Y. Online mass spectrometry of exhaled breath with a modified ambient ion source. Talanta 2023, 255, 124254. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.; Wang, S.; Duan, Z.; Jiang, Y. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuators B Chem. 2020, 318, 128104. [Google Scholar] [CrossRef]
- Fakhri, E.; Plugaru, R.; Sultan, M.T.; Hanning Kristinsson, T.; Örn Árnason, H.; Plugaru, N.; Manolescu, A.; Ingvarsson, S.; Svavarsson, H.G. Piezoresistance characterization of silicon nanowires in uniaxial and isostatic pressure variation. Sensors 2022, 22, 6340. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Yang, P. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, H.; Ji, T. Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching. IEEE Electron Device Lett. 2020, 41, 1233–1236. [Google Scholar] [CrossRef]
- Zhang, S.; Lou, L.; Lee, C. Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 2012, 100, 023111. [Google Scholar] [CrossRef]
- Huo, C.; Wang, J.; Fu, H.; Li, X.; Yang, Y.; Wang, H.; Mateen, A.; Farid, G.; Peng, K.Q. Metal-assisted chemical etching of silicon in oxidizing HF solutions: Origin, mechanism, development, and black silicon solar cell application. Adv. Funct. Mater. 2020, 30, 2005744. [Google Scholar] [CrossRef]
- Svavarsson, H.G.; Hallgrimsson, B.H.; Niraula, M.; Lee, K.J.; Magnusson, R. Large arrays of ultra-high aspect ratio periodic silicon nanowires obtained via top–down route. Appl. Phys. A 2016, 122, 52. [Google Scholar] [CrossRef]
- Leonardi, A.A.; Faro, M.J.L.; Irrera, A. Silicon nanowires synthesis by metal-assisted chemical etching: A review. Nanomaterials 2021, 11, 383. [Google Scholar] [CrossRef]
- Vishwakarma, N.K.; Mahto, S.K. Growth and metal-decorated catalytic applications of silicon nanowires: A review. Bull. Mater. Sci. 2023, 46, 174. [Google Scholar] [CrossRef]
- Wendisch, F.J.; Rey, M.; Vogel, N.; Bourret, G.R. Large-scale synthesis of highly uniform silicon nanowire arrays using metal-assisted chemical etching. Chem. Mater. 2020, 32, 9425–9434. [Google Scholar] [CrossRef]
- Fakhri, E.; Sultan, M.; Manolescu, A.; Ingvarsson, S.; Svavarsson, H. Germanium coated silicon nanowires as human respiratory sensing device. In Proceedings of the 2022 International Semiconductor Conference (CAS), Poiana Brasov, Romania, 12–14 October 2022; pp. 163–166. [Google Scholar]
- Lin, L.; Jacobs, R.; Ma, T.; Chen, D.; Booske, J.; Morgan, D. Work function: Fundamentals, measurement, calculation, engineering, and applications. Phys. Rev. Appl. 2023, 19, 037001. [Google Scholar] [CrossRef]
- Shao, G. Work function and electron affinity of semiconductors: Doping effect and complication due to fermi level pinning. Energy Environ. Mater. 2021, 4, 273–276. [Google Scholar] [CrossRef]
- Zhang, M.L.; Peng, K.Q.; Fan, X.; Jie, J.S.; Zhang, R.Q.; Lee, S.T.; Wong, N.B. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 2008, 112, 4444–4450. [Google Scholar] [CrossRef]
- Nur’aini, A.; Oh, I. Deep Etching of Silicon Based on Metal-Assisted Chemical Etching. ACS Omega 2022, 7, 16665–16669. [Google Scholar] [CrossRef]
- Geyer, N.; Fuhrmann, B.; Leipner, H.S.; Werner, P. Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires. ACS Appl. Mater. Interfaces 2013, 5, 4302–4308. [Google Scholar] [CrossRef]
- Kong, L.; Dasgupta, B.; Ren, Y.; Mohseni, P.K.; Hong, M.; Li, X.; Chim, W.K.; Chiam, S.Y. Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon. Sci. Rep. 2016, 6, 36582. [Google Scholar] [CrossRef]
- Fakhri, E.; Sultan, M.; Manolescu, A.; Ingvarsson, S.; Plugaru, N.; Plugaru, R.; Svavarsson, H. Synthesis and photoluminescence study of silicon nanowires obtained by metal assisted chemical etching. In Proceedings of the 2021 International Semiconductor Conference (CAS), Sinaia, Romania, 6–8 October 2021; pp. 147–150. [Google Scholar]
- Kahn, A. Fermi level, work function and vacuum level. Mater. Horizons 2016, 3, 7–10. [Google Scholar] [CrossRef]
- Novikov, A. Experimental measurement of work function in doped silicon surfaces. Solid-State Electron. 2010, 54, 8–13. [Google Scholar] [CrossRef]
- Schottky, W. Halbleitertheorie der sperrschicht. Naturwissenschaften 1938, 26, 843. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, J.; Yeh, P.H.; Li, Z.; Wei, T.Y.; Wang, Z.L. Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar]
- Lou, C.; Hou, K.; Zhu, W.; Wang, X.; Yang, X.; Dong, R.; Chen, H.; Guo, L.; Liu, X. Human respiratory monitoring based on Schottky resistance humidity sensors. Materials 2020, 13, 430. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Li, Z. Schottky-contacted nanowire sensors. Adv. Mater. 2020, 32, 2000130. [Google Scholar] [CrossRef] [PubMed]
- Nallabala, N.K.R.; Vattikuti, S.P.; Verma, V.; Singh, V.; Alhammadi, S.; Kummara, V.K.; Manjunath, V.; Dhanalakshmi, M.; Reddy, V.R.M. Highly sensitive and cost-effective metal-semiconductor-metal asymmetric type Schottky metallization based ultraviolet photodetecting sensors fabricated on n-type GaN. Mater. Sci. Semicond. Process. 2022, 138, 106297. [Google Scholar] [CrossRef]
- Kondratev, V.M.; Vyacheslavova, E.A.; Shugabaev, T.; Kirilenko, D.A.; Kuznetsov, A.; Kadinskaya, S.A.; Shomakhov, Z.V.; Baranov, A.I.; Nalimova, S.S.; Moshnikov, V.A.; et al. Si Nanowire-Based Schottky Sensors for Selective Sensing of NH3 and HCl via Impedance Spectroscopy. ACS Appl. Nano Mater. 2023, 6, 11513–11523. [Google Scholar] [CrossRef]
- Pires, G.N.; Arnardóttir, E.S.; Islind, A.S.; Leppänen, T.; McNicholas, W.T. Consumer sleep technology for the screening of obstructive sleep apnea and snoring: Current status and a protocol for a systematic review and meta-analysis of diagnostic test accuracy. J. Sleep Res. 2023, 32, e13819. [Google Scholar] [CrossRef]
- Issitt, T.; Wiggins, L.; Veysey, M.; Sweeney, S.T.; Brackenbury, W.J.; Redeker, K. Volatile compounds in human breath: Critical review and meta-analysis. J. Breath Res. 2022, 16, 024001. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, Y.G. Electrical sensing of volatile organic compounds in exhaled breath for disease diagnosis. Curr. Opin. Electrochem. 2022, 33, 100922. [Google Scholar] [CrossRef]
- Amann, A.; De Lacy Costello, B.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8, 034001. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Wang, R.; Yu, P.; Shi, J.; Liu, L. Facile environment-friendly peptide-based humidity sensor for multifunctional applications. Appl. Nanosci. 2021, 11, 961–969. [Google Scholar] [CrossRef]
- He, J.; Xiao, P.; Shi, J.; Liang, Y.; Lu, W.; Chen, Y.; Wang, W.; Théato, P.; Kuo, S.W.; Chen, T. High Performance Humidity Fluctuation Sensor for Wearable Devices via a Bioinspired Atomic-Precise Tunable Graphene-Polymer Heterogeneous Sensing Junction. Chem. Mater. 2018, 30, 4343–4354. [Google Scholar] [CrossRef]
- Kundu, S.; Majumder, R.; Ghosh, R.; Pradhan, M.; Roy, S.; Singha, P.; Ghosh, D.; Banerjee, A.; Banerjee, D.; Pal Chowdhury, M. Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: Wearable and flexible human respiration monitoring application. J. Mater. Sci. 2020, 55, 3884–3901. [Google Scholar] [CrossRef]
- Ghosh, R.; Song, M.S.; Park, J.; Tchoe, Y.; Guha, P.; Lee, W.; Lim, Y.; Kim, B.; Kim, S.W.; Kim, M.; et al. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices. Nano Energy 2021, 80, 105537. [Google Scholar] [CrossRef]
- Gao, D.; Yang, Z.; Zheng, L.; Zheng, K. Piezoresistive effect of n-type<111>-oriented Si nanowires under large tension/compression. Nanotechnology 2017, 28, 095702. [Google Scholar] [PubMed]
- Akbari-Saatlu, M.; Procek, M.; Mattsson, C.; Thungström, G.; Nilsson, H.E.; Xiong, W.; Xu, B.; Li, Y.; Radamson, H.H. Silicon nanowires for gas sensing: A review. Nanomaterials 2020, 10, 2215. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Wang, Z.; Yan, Q.; Hui, S. Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sens. Actuators B Chem. 2011, 156, 631–636. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Li, T. High performance humidity sensor by using silicon nanowire array. In Proceedings of the 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Singapore, 22–26 April 2018; pp. 603–606. [Google Scholar]
- Li, H.; Zhang, J.; Tao, B.; Wan, L.; Gong, W. Investigation of capacitive humidity sensing behavior of silicon nanowires. Phys. E Low-Dimens. Syst. Nanostruct. 2009, 41, 600–604. [Google Scholar] [CrossRef]
- Taghinejad, H.; Taghinejad, M.; Abdolahad, M.; Saeidi, A.; Mohajerzadeh, S. Fabrication and modeling of high sensitivity humidity sensors based on doped silicon nanowires. Sens. Actuators B Chem. 2013, 176, 413–419. [Google Scholar] [CrossRef]
Electrodes | p-Type SiNWs | n-Type SiNWs |
---|---|---|
Au | Ohmic | Schottky |
Al | Schottky | Semi-ohmic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakhri, E.; Sultan, M.T.; Manolescu, A.; Ingvarsson, S.; Svavarsson, H.G. Application of p and n-Type Silicon Nanowires as Human Respiratory Sensing Device. Sensors 2023, 23, 9901. https://doi.org/10.3390/s23249901
Fakhri E, Sultan MT, Manolescu A, Ingvarsson S, Svavarsson HG. Application of p and n-Type Silicon Nanowires as Human Respiratory Sensing Device. Sensors. 2023; 23(24):9901. https://doi.org/10.3390/s23249901
Chicago/Turabian StyleFakhri, Elham, Muhammad Taha Sultan, Andrei Manolescu, Snorri Ingvarsson, and Halldor Gudfinnur Svavarsson. 2023. "Application of p and n-Type Silicon Nanowires as Human Respiratory Sensing Device" Sensors 23, no. 24: 9901. https://doi.org/10.3390/s23249901
APA StyleFakhri, E., Sultan, M. T., Manolescu, A., Ingvarsson, S., & Svavarsson, H. G. (2023). Application of p and n-Type Silicon Nanowires as Human Respiratory Sensing Device. Sensors, 23(24), 9901. https://doi.org/10.3390/s23249901