Ultrafast Modulation of THz Waves Based on MoTe2-Covered Metasurface
Abstract
:1. Introduction
2. Materials and Methods
2.1. MoTe2-Covered EIT Metasurface
2.2. Optical Pump and Terahertz Probe (OPTP) Measurement
3. Results
3.1. Simulation
3.2. Experimental Results
3.2.1. Pump-Fluence Controlled THz Transmission and Slow Light Behavior
3.2.2. Ultrafast Dynamics of the Switching
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photonics 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Salen, P.; Basini, M.; Bonetti, S.; Hebling, J.; Krasilnikov, M.; Nikitin, A.Y.; Shamuilov, G.; Tibai, Z.; Zhaunerchyk, V.; Goryashko, V. Matter manipulation with extreme terahertz light: Progress in the enabling THz technology. Phys. Rep.-Rev. Sec. Phys. Lett. 2019, 836, 1–74. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Zhu, Z.; Sun, L.; Fan, C. Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel. J. Am. Chem. Soc. 2021, 143, 4311–4318. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.H.; Fitzgerald, A.J.; Wallace, V.P. Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology. Sensors 2020, 20, 712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Z.; Tang, C.; Chang, C.; Liu, G. A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: Signal characteristics. Sci. Bull. 2020, 65, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yuan, M.; Huang, H.; Zhu, Y. Recognition of edge object of human body in THz security inspection system. Infrared Laser Eng. 2017, 46, 1125002. [Google Scholar] [CrossRef]
- Yang, Y.; Yamagami, Y.; Yu, X.; Pitchappa, P.; Webber, J.; Zhang, B.; Fujita, M.; Nagatsuma, T.; Singh, R. Terahertz topological photonics for on-chip communication. Nat. Photonics 2020, 14, 446. [Google Scholar] [CrossRef] [Green Version]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Oleiwi, H.W.; Al-Raweshidy, H. SWIPT-Pairing Mechanism for Channel-Aware Cooperative H-NOMA in 6G Terahertz Communications. Sensors 2022, 22, 6200. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.-S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M.Z. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2020, 34, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.H.; Zhang, T.R.; Li, Y.J.; Li, J.L.; Zhao, T.; Wang, W.; Song, T.; Liu, D.W.; Wei, Y.Y.; Gong, Y.B.; et al. Flexible terahertz dynamic tuning modulator: Top-to-bottom construction of in-plane gradient terahertz attenuator network. Compos. Part A-Appl. Sci. Manuf. 2022, 163, 107264. [Google Scholar] [CrossRef]
- Shishanov, S.; Bystrov, A.; Hoare, E.G.; Stove, A.; Gashinova, M.; Cherniakov, M.; Tran, T.-Y.; Clarke, N. Height-Finding for Automotive THz Radars. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1170–1180. [Google Scholar] [CrossRef]
- Kokkoniemi, J.; Jornet, J.M.; Petrov, V.; Koucheryavy, Y.; Juntti, M. Channel Modeling and Performance Analysis of Airplane-Satellite Terahertz Band Communications. IEEE Trans. Veh. Technol. 2021, 70, 2047–2061. [Google Scholar] [CrossRef]
- Farooq, M.S.; Nadir, R.M.; Rustam, F.; Hur, S.; Park, Y.; Ashraf, I. Nested Bee Hive: A Conceptual Multilayer Architecture for 6G in Futuristic Sustainable Smart Cities. Sensors 2022, 22, 5950. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 2012, 11, 426–431. [Google Scholar] [CrossRef]
- Zang, X.; Yao, B.; Chen, L.; Xie, J.; Guo, X.; Balakin, A.V.; Shkurinov, A.P.; Zhuang, S. Metasurfaces for manipulating terahertz waves. Light Adv. Manuf. 2021, 2, 148–172. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Xu, Y.; Tian, Z.; Gu, J.; Yue, W.; Zhang, S.; Han, J.; Zhang, W. A Broadband Metasurface-Based Terahertz Flat-Lens Array. Adv. Opt. Mater. 2015, 3, 779–785. [Google Scholar] [CrossRef]
- Li, W.Y.; Sun, R.; Liu, J.Y.; Meng, T.H.; Zhao, G.Z. Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation. Chin. Phys. B 2022, 31, 108701. [Google Scholar] [CrossRef]
- Sun, D.D.; Qi, L.M.; Liu, Z.Y. Terahertz broadband filter and electromagnetically induced transparency structure with complementary metasurface. Results Phys. 2020, 16, 102887. [Google Scholar] [CrossRef]
- Li, W.Y.; Zhao, G.Z.; Meng, T.H.; Sun, R.; Guo, J.Y. High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces. Chin. Phys. B 2021, 30, 058103. [Google Scholar] [CrossRef]
- Li, X.N.; Zhou, L.; Zhao, G.Z. Terahertz vortex beam generation based on reflective metasurface. Acta Phys. Sin. 2019, 68, 238101. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef]
- He, Q.; Sun, S.; Zhou, L. Tunable/Reconfigurable Metasurfaces: Physics and Applications. Research 2019, 2019, 1849272. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.C.; Zhao, Q.; Zhang, F.L.; Shen, N.H. Editorial: Tunable and Reconfigurable Optical Metamaterials. Front. Phys. 2021, 9, 713966. [Google Scholar] [CrossRef]
- Gu, J.; Singh, R.; Liu, X.; Zhang, X.; Ma, Y.; Zhang, S.; Maier, S.A.; Tian, Z.; Azad, A.K.; Chen, H.-T.; et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 2012, 3, 1151. [Google Scholar] [CrossRef] [Green Version]
- Cong, L.; Srivastava, Y.K.; Zhang, H.; Zhang, X.; Han, J.; Singh, R. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light-Sci. Appl. 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Lou, J.; Wu, S.; Yu, Y.; Liang, J.; Huang, Y.; Fang, G.; Chang, C. SnSe2-functionalized ultrafast terahertz switch with ultralow pump threshold. J. Mater. Chem. C 2022, 10, 5805–5812. [Google Scholar] [CrossRef]
- Lou, J.; Jiao, Y.; Yang, R.; Huang, Y.; Xu, X.; Zhang, L.; Ma, Z.; Yu, Y.; Peng, W.; Yuan, Y.; et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc. Natl. Acad. Sci. USA 2022, 119, e2209218119. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.X.; Manjappa, M.; Srivastava, Y.K.; Cong, L.Q.; Kumar, A.; MacDonald, K.F.; Singh, R. Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices. Adv. Mater. 2018, 30, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.Z.; You, J.; Tong, M.Y.; Zheng, X.; Xu, Z.J.; Cheng, X.G.; Jiang, T. Pump-Color Selective Control of Ultrafast All-Optical Switching Dynamics in Metaphotonic Devices. Adv. Sci. 2020, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Liang, J.; Yu, Y.; Ma, H.; Yang, R.; Fan, Y.; Wang, G.; Cai, T. Silicon-Based Terahertz Meta-Devices for Electrical Modulation of Fano Resonance and Transmission Amplitude. Adv. Opt. Mater. 2020, 8, 2000449. [Google Scholar] [CrossRef]
- Tao, X.; Qi, L.M.; Fu, T.; Wang, B.; Uqaili, J.A.; Lan, C.W. A tunable dual-band asymmetric transmission metasurface with strong circular dichroism in the terahertz communication band. Opt. Laser Technol. 2022, 150, 107932. [Google Scholar] [CrossRef]
- Nan, J.M.; Yang, R.S.; Xu, J.; Fu, Q.H.; Zhang, F.L.; Fan, Y.C. Actively modulated propagation of electromagnetic wave in hybrid metasurfaces containing graphene. Epj Appl. Metamater. 2021, 7, 9. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, P.C.; Sokhoyan, R.; Mauser, K.; Glaudell, R.; Shirmanesh, G.K.; Atwater, H.A. Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. Nano Lett. 2019, 19, 3961–3968. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Wang, Y.; Lu, R.; Tan, F.; Fu, Y.; Wang, G.; Wang, D.; Liu, K.; Fan, S.; Jiang, K.; et al. A flexible, multifunctional, active terahertz modulator with an ultra-low triggering threshold. J. Mater. Chem. C 2020, 8, 10213–10220. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Qi, L.M.; Lan, F.; Lan, C.W.; Yang, J.; Tao, X. A VO2 film-based multifunctional metasurface in the terahertz band. Chin. Opt. Lett. 2022, 20, 013602. [Google Scholar] [CrossRef]
- Pitchappa, P.; Manjappa, M.; Ho, C.P.; Singh, R.; Singh, N.; Lee, C. Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial. Adv. Opt. Mater. 2016, 4, 541–547. [Google Scholar] [CrossRef]
- Zhu, W.M.; Liu, A.Q.; Bourouina, T.; Tsai, D.P.; Teng, J.H.; Zhang, X.H.; Lo, G.Q.; Kwong, D.L.; Zheludev, N.I. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat. Commun. 2012, 3, 1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Pumera, M.; Sofer, Z.; Ambrosi, A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2, 8981–8987. [Google Scholar] [CrossRef]
- Ruppert, C.; Aslan, O.B.; Heinz, T.F. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals. Nano Lett. 2014, 14, 6231–6236. [Google Scholar] [CrossRef]
- Lezama, I.G.; Ubaldini, A.; Longobardi, M.; Giannini, E.; Renner, C.; Kuzmenko, A.B.; Morpurgo, A.F. Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals. 2D Mater. 2014, 1, 021002. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Lee, G.; Joo, M.-K.; Yun, Y.; Yi, H.; Park, J.-H.; Suh, D.; Lim, S.C. Thickness-dependent carrier mobility of ambipolar MoTe2: Interplay between interface trap and Coulomb scattering. Appl. Phys. Lett. 2017, 110, 183501. [Google Scholar] [CrossRef]
- Kuiri, M.; Chakraborty, B.; Paul, A.; Das, S.; Sood, A.K.; Das, A. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures. Appl. Phys. Lett. 2016, 108, 063506. [Google Scholar] [CrossRef]
- Yin, L.; Zhan, X.; Xu, K.; Wang, F.; Wang, Z.; Huang, Y.; Wang, Q.; Jiang, C.; He, J. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett. 2016, 108, 043503. [Google Scholar] [CrossRef]
- Pradhan, N.R.; Rhodes, D.; Feng, S.; Xin, Y.; Memaran, S.; Moon, B.-H.; Terrones, H.; Terrones, M.; Balicas, L. Field-Effect Transistors Based on Few-Layered alpha-MoTe2. Acs Nano 2014, 8, 5911–5920. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-F.; Xu, Y.; Lin, C.-Y.; Suen, Y.-W.; Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Origin of Noise in Layered MoTe2 Transistors and its Possible Use for Environmental Sensors. Adv. Mater. 2015, 27, 6612. [Google Scholar] [CrossRef]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Xu, X.; Huang, Y.; Yu, Y.; Wang, J.; Fang, G.; Liang, J.; Fan, C.; Chang, C. Optically Controlled Ultrafast Terahertz Metadevices with Ultralow Pump Threshold. Small 2021, 17, e2104275. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.Q.; Singh, R. Spatiotemporal Dielectric Metasurfaces for Unidirectional Propagation and Reconfigurable Steering of Terahertz Beams. Adv. Mater. 2020, 32, 2001418. [Google Scholar] [CrossRef] [PubMed]
- Manjappa, M.; Solanki, A.; Kumar, A.; Sum, T.C.; Singh, R. Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices. Adv. Mater. 2019, 31, 1901455. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jiang, T.; Zhou, J.; Hao, H.; Sun, H.; Ouyang, H.; Tong, M.; Tang, Y.; Li, H.; You, J.; et al. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy 2020, 68, 104280. [Google Scholar] [CrossRef]
- Krauss, T.F. Why do we need slow light? Nat. Photonics 2008, 2, 448–450. [Google Scholar] [CrossRef]
- He, W.; Tong, M.; Xu, Z.; Hu, Y.; Cheng, X.A.; Jiang, T. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface. Photonics Res. 2021, 9, 1099–1108. [Google Scholar] [CrossRef]
- Firstov, S.V.; Khegai, A.M.; Kharakhordin, A.V.; Alyshev, S.V.; Firstova, E.G.; Ososkov, Y.J.; Melkumov, M.A.; Iskhakova, L.D.; Evlampieva, E.B.; Lobanov, A.S.; et al. Compact and efficient O-band bismuth-doped phosphosilicate fiber amplifier for fiber-optic communications. Sci. Rep. 2020, 10, 11347. [Google Scholar] [CrossRef]
- Liu, G.; Chang, C.; Qiao, Z.; Wu, K.; Zhu, Z.; Cui, G.; Peng, W.; Tang, Y.; Li, J.; Fan, C. Myelin Sheath as a Dielectric Waveguide for Signal Propagation in the Mid-Infrared to Terahertz Spectral Range. Adv. Funct. Mater. 2019, 29, 1807862. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Liang, S.; Liao, X.; Li, T.; Qiao, Z.; Chang, C.; Jia, H.; Chen, X. Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning. Nat. Commun. 2021, 12, 2730. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Lou, J.; Gao, M.; Wu, S.; Fang, G.; Huang, Y. Ultrafast Modulation of THz Waves Based on MoTe2-Covered Metasurface. Sensors 2023, 23, 1174. https://doi.org/10.3390/s23031174
Xu X, Lou J, Gao M, Wu S, Fang G, Huang Y. Ultrafast Modulation of THz Waves Based on MoTe2-Covered Metasurface. Sensors. 2023; 23(3):1174. https://doi.org/10.3390/s23031174
Chicago/Turabian StyleXu, Xing, Jing Lou, Mingxin Gao, Shiyou Wu, Guangyou Fang, and Yindong Huang. 2023. "Ultrafast Modulation of THz Waves Based on MoTe2-Covered Metasurface" Sensors 23, no. 3: 1174. https://doi.org/10.3390/s23031174
APA StyleXu, X., Lou, J., Gao, M., Wu, S., Fang, G., & Huang, Y. (2023). Ultrafast Modulation of THz Waves Based on MoTe2-Covered Metasurface. Sensors, 23(3), 1174. https://doi.org/10.3390/s23031174