Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting
Abstract
:1. Introduction
2. Methods
2.1. Limitations of the Direct Sinogram Correction Method
2.2. Modification of the Direct Sinogram Correction Method
2.3. Metal Segmentation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angelopoulos, C.; Scarfe, W.C.; Farman, A.G. A Comparison of Maxillofacial CBCT and Medical CT. Atlas Oral Maxillofac. Surg. Clin. 2012, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Stadlinger, B.; Valdec, S.; Wacht, L.; Essig, H.; Winklhofer, S. 3D-cinematic rendering for dental and maxillofacial imaging. Dentomaxillofac. Radiol. 2020, 49, 20190249. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.H.; Hegazy, M.A.A.; Cho, M.H.; Lee, S.Y. Cone-Beam Angle Dependency of 3D Models Computed from Cone-Beam CT Images. Sensors 2022, 22, 1253. [Google Scholar] [CrossRef]
- De Man, B.; Nuyts, J.; Dupont, P.; Marchal, G.; Suetens, P. Metal streak artifacts in X-ray computed tomography: A simulation study. IEEE Trans. Nucl. Sci. 1999, 46, 691–696. [Google Scholar] [CrossRef]
- Kataoka, M.L.; Hochman, M.G.; Rodriguez, E.K.; Lin, P.-J.; Kubo, S.; Raptopolous, V.D. A Review of Factors That Affect Artifact from Metallic Hardware on Multi-Row Detector Computed Tomography. Curr. Probl. Diagn. Radiol. 2010, 39, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Boas, F.E.; Fleischmann, D. CT artifacts: Causes and reduction techniques. Imaging Med. 2012, 4, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Gjesteby, L.; de Man, B.; Jin, Y.; Paganetti, H.; Verburg, J.; Giantsoudi, D.; Wang, G. Metal Artifact Reduction in CT: Where Are We After Four Decades? IEEE Access 2016, 4, 5826–5849. [Google Scholar] [CrossRef]
- Mahnken, A.H.; Raupach, R.; Wildberger, J.E.; Jung, B.; Heussen, N.; Flohr, T.G.; Günther, R.W.; Schaller, S. A New Algorithm for Metal Artifact Reduction in Computed Tomography: In Vitro and in Vivo Evaluation after Total Hip Replacement. Investig. Radiol. 2003, 38, 769–775. [Google Scholar] [CrossRef]
- Bruyant, P.P.; Sau, J.; Mallet, J.J. Streak artifact reduction in filtered backprojection using a level line-based interpolation method. J. Nucl. Med. 2000, 41, 1913–1919. [Google Scholar]
- Kalender, A.W.; Hebel, R.; Ebersberger, J. Reduction of CT artifacts caused by metallic implants. Radiology 1987, 164, 576–577. [Google Scholar] [CrossRef]
- Glover, G.H.; Pelc, N.J. An algorithm for the reduction of metal clip artifacts in CT reconstructions. Med. Phys. 1981, 8, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Prell, D.; Kyriakou, Y.; Beister, M.; Kalender, W.A. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography. Phys. Med. Biol. 2009, 54, 6575–6591. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, C.; Faul, D.; Nuyts, J. Suppression of Metal Artifacts in CT Using a Reconstruction Procedure That Combines MAP and Projection Completion. IEEE Trans. Med. Imaging 2008, 28, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Bal, M.; Spies, L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med. Phys. 2006, 33, 2852–2859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, K.Y.; Ra, J.B. Metal artifact reduction based on sinogram correction in CT. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 3480–3483. [Google Scholar] [CrossRef]
- Tuy, H. A post-processing algorithm to reduce metallic clip artifacts in CT images. Eur. Radiol. 1993, 3, 129–134. [Google Scholar] [CrossRef]
- Meyer, E.; Raupach, R.; Schmidt, B.; Mahnken, A.H.; Kachelriess, M. Adaptive normalized metal artifact reduction (ANMAR) in computed tomography. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 2560–2565. [Google Scholar] [CrossRef]
- Meyer, E.; Raupach, R.; Lell, M.; Schmidt, B.; Kachelriess, M. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 2010, 37, 5482–5493. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, Y.E.; Luo, S.; Shi, H.; Li, L.; Zheng, L.; Zhang, L.J.; Lu, G. Monoenergetic Imaging of Dual-energy CT Reduces Artifacts from Implanted Metal Orthopedic Devices in Patients with Factures. Acad. Radiol. 2011, 18, 1252–1257. [Google Scholar] [CrossRef]
- Meinel, F.G.; Bischoff, B.; Zhang, Q.; Bamberg, F.; Reiser, M.F.; Johnson, T.R.C. Metal Artifact Reduction by Dual-Energy Computed Tomography Using Energetic Extrapolation: A Systematically Optimized Protocol. Investig. Radiol. 2012, 47, 406–414. [Google Scholar] [CrossRef]
- Bamberg, F.; Dierks, A.; Nikolaou, K.; Reiser, M.F.; Becker, C.R.; Johnson, T.R.C. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur. Radiol. 2011, 21, 1424–1429. [Google Scholar] [CrossRef]
- Hamelin, B.; Goussard, Y.; Gendron, D.; Dussault, J.P.; Cloutier, G.; Beaudoin, G.; Soulez, G. Iterative CT Reconstruction of Real Data with Metal Artifact Reduction. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 1453–1456. [Google Scholar]
- Wang, G.; Frei, T.; Vannier, M.W. Fast iterative algorithm for metal artifact reduction in X-ray CT. Acad. Radiol. 2000, 7, 607–614. [Google Scholar] [CrossRef]
- Wang, G.; Vannier, M.W.; Cheng, P.-C. Iterative X-ray Cone-Beam Tomography for Metal Artifact Reduction and Local Region Reconstruction. Microsc. Microanal. 1999, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Snyder, D.; O’Sullivan, J.; Vannier, M. Iterative deblurring for CT metal artifact reduction. IEEE Trans. Med. Imaging 1996, 15, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.A.A.; Cho, M.H.; Cho, M.H.; Lee, S.Y. U-Net Based Metal Segmentation on Projection Domain for Metal Artifact Reduction in Dental CT. Biomed. Eng. Lett. 2019, 9, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liang, X.; Deng, L.; Zhang, C.; Zhou, X.; Xie, Y.; Zhang, H. CT Metal Artifact Correction Assisted by the Deep Learning-based Metal Segmentation on the Projection Domain. In Proceedings of the 2021 IEEE International Conference on Medical Imaging Physics and Engineering (ICMIPE), Hefei, China, 12–14 November 2021. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Tang, F.; Zhong, T.; Zhang, Y. Metal Artifact Reduction on Cervical CT Images by Deep Residual Learning 08 Information and Computing Sciences 0801 Artificial Intelligence and Image Processing. Biomed. Eng. Online 2018, 17, 1–15. [Google Scholar]
- Wang, Z.; Vandersteen, C.; Demarcy, T.; Gnansia, D.; Raffaelli, C.; Guevara, N.; Delingette, H. Deep Learning Based Metal Artifacts Reduction in Post-operative Cochlear Implant CT Imaging. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; pp. 121–129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, H. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography. IEEE Trans. Med. Imaging 2018, 37, 1370–1381. [Google Scholar] [CrossRef]
- Ghani, M.U.; Karl, W.C. Deep Learning Based Sinogram Correction for Metal Artifact Reduction. Electron. Imaging 2018, 30, 1–4728. [Google Scholar] [CrossRef]
- Ghani, M.U.; Karl, W.C. Fast Enhanced CT Metal Artifact Reduction Using Data Domain Deep Learning. IEEE Trans. Comput. Imaging 2020, 6, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.A.; Liao, H.; Peng, C.; Sun, X.; Zhang, J.; Luo, J.; Chellappa, R.; Zhou, S.K. DuDoNet: Dual Domain Network for CT Metal Artifact Reduction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10504–10513. [Google Scholar]
- Verburg, J.M.; Seco, J. CT metal artifact reduction method correcting for beam hardening and missing projections. Phys. Med. Biol. 2012, 57, 2803–2818. [Google Scholar] [CrossRef]
- Schüller, S.; Sawall, S.; Stannigel, K.; Hülsbusch, M.; Ulrici, J.; Hell, E.; Kachelrieß, M. Segmentation-free empirical beam hardening correction for CT. Med. Phys. 2015, 42, 794–803. [Google Scholar] [CrossRef]
- Lee, S.M.; Bayaraa, T.; Jeong, H.; Hyun, C.M.; Seo, J.K. A Direct Sinogram Correction Method to Reduce Metal-Related Beam-Hardening in Computed Tomography. IEEE Access 2019, 7, 128828–128836. [Google Scholar] [CrossRef]
- Bayaraa, T.; Hyun, C.M.; Jang, T.J.; Lee, S.M.; Seo, J.K. A Two-Stage Approach for Beam Hardening Artifact Reduction in Low-Dose Dental CBCT. IEEE Access 2020, 8, 225981–225994. [Google Scholar] [CrossRef]
- Andrew, A. Another efficient algorithm for convex hulls in two dimensions. Inf. Process. Lett. 1979, 9, 216–219. [Google Scholar] [CrossRef]
- Chadnov, R.V.; Skvortsov, A.V. Convex Hull Algorithms Review. In Proceedings of the 8th Korea-Russia International Symposium on Science and Technology, KORUS 2004, Tomsk, Russia, 26 June–3 July 2004; Volume 2, pp. 112–115. [Google Scholar]
- Graham, R.L. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set. Inf. Process. Lett. 1972, 1, 132–133. [Google Scholar] [CrossRef]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Xie, Y.; Wang, J.; Xing, L. Scatter correction for cone-beam CT in radiation therapy. Med. Phys. 2009, 36, 2258–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlap, J.C.; Bodegom, E.; Widenhorn, R. Characterization and correction of dark current in compact consumer cameras. In Proceedings of the Sensors, Cameras, and Systems for Industrial/Scientific Applications XI, San Jose, CA, USA, 17–21 January 2010; Volume 7536, pp. 165–176. [Google Scholar] [CrossRef] [Green Version]
- Bassler, N. Radiation damage in charge-coupled devices. Radiat. Environ. Biophys. 2010, 49, 373–378. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Scott, C.C.; Bubon, O.; Reznik, A.; Karim, K.S. Enhanced Detection Efficiency of Direct Conversion X-ray Detector Using Polyimide as Hole-Blocking Layer. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Seet, K.Y.T.; Barghi, A.; Yartsev, S.; Van Dyk, J. The effects of field-of-view and patient size on CT numbers from cone-beam computed tomography. Phys. Med. Biol. 2009, 54, 6251. [Google Scholar] [CrossRef] [Green Version]
- Lehr, J. Truncated-view artifacts: Clinical importance on CT. Am. J. Roentgenol. 1983, 141, 183–191. [Google Scholar] [CrossRef]
Uncorrected | DSC Method | Proposed Method | |||||||
---|---|---|---|---|---|---|---|---|---|
Iodine concentration (mgI/mL) | 300 | 150 | 75 | 300 | 150 | 75 | 300 | 150 | 75 |
Average intensity in the yellow ROI (A) | 6.14 | 5.24 | 4.15 | 8.73 | 7.16 | 4.80 | 10.01 | 6.67 | 4.73 |
Average intensity in the red ROI (B) | 5.13 | 3.43 | 2.63 | 6.37 | 3.71 | 2.80 | 5.63 | 3.42 | 2.68 |
Intensity ratio (A/B) | 1.20 | 1.53 | 1.58 | 1.37 | 1.93 | 1.70 | 1.78 | 1.95 | 1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegazy, M.A.A.; Cho, M.H.; Cho, M.H.; Lee, S.Y. Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting. Sensors 2023, 23, 1288. https://doi.org/10.3390/s23031288
Hegazy MAA, Cho MH, Cho MH, Lee SY. Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting. Sensors. 2023; 23(3):1288. https://doi.org/10.3390/s23031288
Chicago/Turabian StyleHegazy, Mohamed A. A., Myung Hye Cho, Min Hyoung Cho, and Soo Yeol Lee. 2023. "Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting" Sensors 23, no. 3: 1288. https://doi.org/10.3390/s23031288
APA StyleHegazy, M. A. A., Cho, M. H., Cho, M. H., & Lee, S. Y. (2023). Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting. Sensors, 23(3), 1288. https://doi.org/10.3390/s23031288