How Does Neural Network Model Capacity Affect Photovoltaic Power Prediction? A Study Case
Abstract
:1. Introduction
- How complex does the network architecture need to be to predict very short-term power production demands satisfactorily?
2. Materials and Methods
2.1. Database Acquisition
2.2. Database Analysis
2.3. Data Preprocessing
2.4. Prediction Models
- Number of hidden layers between 1 to 4;
- –
- Neurons from 32 to 256 with 32 increase at each step;
- –
- Rectified Linear Unit (ReLU) for the MLPs and Tangent Hyperbolic (Tanh) for the RNNs and LSTMs, as hidden layers activation function;
- Dropout layer after each hidden layer;
- –
- Dropout rate from 0 to 0.8 with 0.2 increase at each step.
- 5 Neurons in the output layer;
- Learning rate of ;
- –
- Early stopping;
- –
- Reduce on plateau;
- Linear as output layer activation function.
2.5. Training and Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
kW | KiloWatts |
STC | Standard Test Conditions |
ANN | Artificial Neural Network |
MLP | Multilayer Perceptron |
RNN | Recurrent Neural Network |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
RMSE | Root Mean Squared Error |
STD | Standard Deviation of Error |
NTP | Number of Trainable Parameters |
TT | Time of One Epoch of Training |
IF | Inference Time |
TanH | Hyperbolic Tangent |
ReLu | Rectified Linear Unit |
BPTT | Backpropagation Through Time |
SVR | Support Vector Regression |
GRU | Gated Recurrent Unit |
References
- REN21 Secretariat. Renewables 2021 Global Status Report; Technical Report; UNEP: Geneva, Switzerland, 2021. [Google Scholar]
- Brazilian Ministry of Mines and Energy. Monthly Bulletin on Monitoring the Brazilian Electrical System. 2021. Available online: https://www.gov.br/mme/pt-br/assuntos/secretarias/energia-eletrica/publicacoes/boletim-de-monitoramento-do-sistema-eletrico/2022/boletim-de-monitoramento-do-sistema-eletrico-abr-2022.pdf (accessed on 12 November 2022).
- Teo, T.T.; Logenthiran, T.; Woo, W.L. Forecasting of photovoltaic power using extreme learning machine. In Proceedings of the 2015 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–6 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Behera, M.K.; Majumder, I.; Nayak, N. Solar photovoltaic power forecasting using optimized modified extreme learning machine technique. Eng. Sci. Technol. Int. J. 2018, 21, 428–438. [Google Scholar] [CrossRef]
- Das, U.; Tey, K.S.; Idris, M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Forecasting of Photovoltaic Power Generation and Model Optimization. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Raza, M.Q.; Nadarajah, M.; Ekanayake, C. On recent advances in PV output power forecast. Sol. Energy 2016, 136, 125–144. [Google Scholar] [CrossRef]
- Notton, G.; Nivet, M.L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renew. Sustain. Energy Rev. 2018, 87, 96–105. [Google Scholar] [CrossRef]
- Ghosh, S.; Rahman, S.; Pipattanasomporn, M. Distribution Voltage Regulation Through Active Power Curtailment With PV Inverters and Solar Generation Forecasts. IEEE Trans. Sustain. Energy 2017, 8, 13–22. [Google Scholar] [CrossRef]
- Dobschinski, J.; Bessa, R.; Du, P.; Geisler, K.; Haupt, S.E.; Lange, M.; Möhrlen, C.; Nakafuji, D.; de la Torre Rodriguez, M. Uncertainty Forecasting in a Nutshell: Prediction Models Designed to Prevent Significant Errors. IEEE Power Energy Mag. 2017, 15, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- Lim, W.T.; Wang, L.; Wang, Y.; Chang, Q. Housing price prediction using neural networks. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z. A Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term Memory. Water 2022, 14, 610. [Google Scholar] [CrossRef]
- Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 2015, 1, 38–46. [Google Scholar] [CrossRef]
- Sabino, E.R.C. Previsão de radiação solar e temperatura ambiente voltada para auxiliar a operação de usina fotovoltaicas. In Proceedings of the VII Brazilian Solar Energy Congress, Online, 17–20 April 2018; pp. 518–522. [Google Scholar]
- Yen, C.F.; Hsieh, Y.; Su, K.W.; Yu, M.C.; Leu, J.S. Solar Power Prediction via Support Vector Machine and Random Forest. E3S Web Conf. 2018, 69, 01004. [Google Scholar] [CrossRef] [Green Version]
- Chow, C.; Urquhart, B.; Lave, M.; Dominguez, A.; Kleissl, J.; Shields, J.; Washom, B. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol. Energy 2011, 85, 2881–2893. [Google Scholar] [CrossRef] [Green Version]
- Bouzerdoum, M.; Mellit, A.; Massi Pavan, A. A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Sol. Energy 2013, 98, 226–235. [Google Scholar] [CrossRef]
- Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Delle Monache, L. Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble. Renew. Energy 2017, 108, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Kaaya, I.; Ascencio-Vásquez, J. Photovoltaic Power Forecasting Methods. In Solar Radiation; Aghaei, M., Ed.; IntechOpen: London, UK, 2021; Chapter 9. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 2010, 84, 807–821. [Google Scholar] [CrossRef]
- Watetakarn, S.; Premrudeepreechacharn, S. Forecasting of solar irradiance for solar power plants by artificial neural network. In Proceedings of the 2015 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–5 November 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Malki, H.A.; Karayiannis, N.B.; Balasubramanian, M. Short-term electric power load forecasting using feedforward neural networks. Expert Syst. 2004, 21, 157–167. [Google Scholar] [CrossRef]
- Liu, C.H.; Gu, J.C.; Yang, M.T. A Simplified LSTM Neural Networks for One Day-Ahead Solar Power Forecasting. IEEE Access 2021, 9, 17174–17195. [Google Scholar] [CrossRef]
- De, V.; Teo, T.T.; Woo, W.L.; Logenthiran, T. Photovoltaic Power Forecasting using LSTM on Limited Dataset. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 710–715. [Google Scholar] [CrossRef]
- Gabriel, I.; Gomes, G.; Araujo, I.; Barboza, E.; Vieira, T.; Brito, D. Previsão de geração fotovoltaica a partir de dados metereológicos utilizando rede LSTM. In Proceedings of the VIII Congresso Brasileiro de Energia Solar-CBENS 2020; ANAIS CBENS: Fortaleza, Brazil, 2020. [Google Scholar]
- Harrou, F.; Kadri, F.; Sun, Y. Forecasting of Photovoltaic Solar Power Production Using LSTM Approach. In Proceedings of the Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems; Harrou, F., Sun, Y., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chi, Y.; Xiao, L. Solar Power Generation Forecast Based on LSTM. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018; pp. 869–872. [Google Scholar] [CrossRef]
- Chen, H.; Chang, X. Photovoltaic power prediction of LSTM model based on Pearson feature selection. Energy Rep. 2021, 7, 1047–1054. [Google Scholar] [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; Houm, Y.E.; Ou Ali, I.H. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electr. Power Syst. Res. 2022, 208, 107908. [Google Scholar] [CrossRef]
- Masuko, T. Computational cost reduction of long short-term memory based on simultaneous compression of input and hidden state. In Proceedings of the 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Okinawa, Japan, 16–20 December 2017; pp. 126–133. [Google Scholar] [CrossRef]
- İzgi, E.; Öztopal, A.; Durna, B.; Kaymak, M.; Şahin, A. Short–mid-term solar power prediction by using artificial neural networks. Sol. Energy 2012, 86, 725–733. [Google Scholar] [CrossRef]
- Chollet, F. Keras. GitHub. 2015. Available online: https://github.com/fchollet/keras (accessed on 12 November 2022).
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238. [Google Scholar]
- Dewancker, I.; McCourt, M.; Clark, S. Bayesian Optimization Primer. 2015. Available online: https://sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf (accessed on 26 November 2022).
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Welch, B.L. The Generalization of ‘Student’s’ Problem when Several Different Population Variances are Involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sustain. Energy Rev. 2019, 108, 513–538. [Google Scholar] [CrossRef]
- Meng, M.; Song, C. Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter. Sustainability 2020, 12, 2247. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, W.; Chang, Y. Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting. Energies 2018, 11, 2163. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
Characteristics | ||||
---|---|---|---|---|
Maximum | Minimum | Average | Standard Deviation | |
value | 7807 W | W | W | W |
MAE | RMSE | STD | |
---|---|---|---|
“Average” baseline | 315.191 W | 623.784 W | 623.778 W |
“One-minute” baseline | 127.951 W | 380.220 W | 380.220 W |
Linear Regression | 145.364 W | 345.226 W | 345.212 W |
One Hidden Layer MLP | 125.113 W | 350.306 W | 349.889 W |
MLP optimized | 117.308 W | 343.702 W | 342.861 W |
One hidden layer simple RNN | 131.823 W | 335.315 W | 335.033 W |
Simple RNN optimized | 114.737 W | 340.167 W | 339.298 W |
One hidden layer LSTM | 128.482 W | 330.753 W | 330.545 W |
LSTM optimized | 114.728 W | 341.933 W | 340.993 W |
TT | NTP | IF | MAE | |
---|---|---|---|---|
MLP | 3 s | 21,965 | 2.837 ms | 125.113 W |
MLP Optimized | 4 s | 556,325 | 2.887 ms | 117.308 W |
RNN | 48 s | 15,485 | 3.465 ms | 131.823 W |
RNN Optimized | 125 s | 3397 | 4.067 ms | 114.737 W |
LSTM | 129 s | 60,165 | 2.951 ms | 137.235 W |
LSTM Optimized | 323 s | 792,837 | 3.231 ms | 114.728 W |
t Test | ||||
---|---|---|---|---|
t Value | p Value | Tail | Degree of Freedom | |
value | ≤0.05 | Two-sided | 577,676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, C.H.T.d.; Melo, G.C.G.d.; Vieira, T.F.; Araújo, Í.B.Q.d.; Medeiros Martins, A.d.; Torres, I.C.; Brito, D.B.; Santos, A.K.X. How Does Neural Network Model Capacity Affect Photovoltaic Power Prediction? A Study Case. Sensors 2023, 23, 1357. https://doi.org/10.3390/s23031357
Andrade CHTd, Melo GCGd, Vieira TF, Araújo ÍBQd, Medeiros Martins Ad, Torres IC, Brito DB, Santos AKX. How Does Neural Network Model Capacity Affect Photovoltaic Power Prediction? A Study Case. Sensors. 2023; 23(3):1357. https://doi.org/10.3390/s23031357
Chicago/Turabian StyleAndrade, Carlos Henrique Torres de, Gustavo Costa Gomes de Melo, Tiago Figueiredo Vieira, Ícaro Bezzera Queiroz de Araújo, Allan de Medeiros Martins, Igor Cavalcante Torres, Davi Bibiano Brito, and Alana Kelly Xavier Santos. 2023. "How Does Neural Network Model Capacity Affect Photovoltaic Power Prediction? A Study Case" Sensors 23, no. 3: 1357. https://doi.org/10.3390/s23031357
APA StyleAndrade, C. H. T. d., Melo, G. C. G. d., Vieira, T. F., Araújo, Í. B. Q. d., Medeiros Martins, A. d., Torres, I. C., Brito, D. B., & Santos, A. K. X. (2023). How Does Neural Network Model Capacity Affect Photovoltaic Power Prediction? A Study Case. Sensors, 23(3), 1357. https://doi.org/10.3390/s23031357