Reconfigurable Split Ring Resonators by MEMS-Driven Geometrical Tuning
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Tuning by Linear Displacement
3.2. Tuning by Angular Displacement
3.3. MEMS-Based Reconfigurable DSRR for Linear Extrusion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, R.-J.; Lin, Y.-S. Actively MEMS-based tunable metamaterials for advanced and emerging applications. Electronics 2022, 11, 243. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.O.; See, C.H.; Liu, B.; Abd-Alhameed, R.A.; Falcone, F.; Huynen, I. A comprehensive survey of “metamaterial transmission-line based antennas: Design, challenges, and applications”. IEEE Access 2020, 8, 144778–144808. [Google Scholar] [CrossRef]
- Rizzato, S.; Leo, A.; Monteduro, A.G.; Chiriacò, M.S.; Primiceri, E.; Sirsi, F.; Milone, A.; Maruccio, G. Advances in the Development of Innovative Sensor Platforms for Field Analysis. Micromachines 2020, 11, 491. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Cui, T.J. Tunable, reconfigurable, and programmable metamaterials. Microw. Opt. Technol. Lett. 2020, 62, 9–32. [Google Scholar] [CrossRef]
- Tao, H.; Strikwerda, A.; Fan, K.; Padilla, W.; Zhang, X.; Averitt, R. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 2009, 103, 147401. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Xu, X.; Lin, Y.-S. Tunable terahertz metamaterial with electromagnetically induced transparency characteristic for sensing application. Nanomaterials 2021, 11, 2175. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Y.-S. Design of tunable terahertz metamaterial sensor with single-and dual-resonance characteristic. Nanomaterials 2021, 11, 2212. [Google Scholar] [CrossRef]
- Horestani, A.K.; Fumeaux, C.; Al-Sarawi, S.F.; Abbott, D. Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sens. J. 2012, 13, 1153–1160. [Google Scholar] [CrossRef]
- Abduljabar, A.A.; Rowe, D.J.; Porch, A.; Barrow, D.A. Novel microwave microfluidic sensor using a microstrip split-ring resonator. IEEE Trans. Microw. Theory Tech. 2014, 62, 679–688. [Google Scholar] [CrossRef]
- Wen, Y.; Liang, Z.; Lin, Y.-S. Tunable Perfect Meta-Absorber with High-Sensitive Polarization Characteristic. Adv. Photonics Res. 2021, 2, 2000027. [Google Scholar] [CrossRef]
- Nornikman, H.; Ahmad, B.H.; Abd Aziz, M.Z.A.; Othman, A. Effect of single complimentary split ring resonator structure on microstrip patch antenna design. In Proceedings of the 2012 IEEE Symposium on Wireless Technology and Applications (ISWTA), Bandung, Indonesia, 23–26 September 2012; pp. 239–244. [Google Scholar]
- Horestani, A.K.; Shaterian, Z.; Naqui, J.; Martin, F.; Fumeaux, C. Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas. IEEE Trans. Antennas Propag. 2016, 64, 3766–3776. [Google Scholar] [CrossRef]
- Delsing, P.; Cleland, A.N.; Schuetz, M.J.A.; Knörzer, J.; Giedke, G.; Cirac, J.I.; Srinivasan, K.; Wu, M.; Balram, K.C.; Bäuerle, C.; et al. The 2019 surface acoustic waves roadmap. J. Phys. D Appl. Phys. 2019, 52, 353001. [Google Scholar] [CrossRef]
- Rizzato, S.; Scigliuzzo, M.; Chiriacò, M.S.; Scarlino, P.; Monteduro, A.G.; Maruccio, C.; Tasco, V.; Maruccio, G. Excitation and time resolved spectroscopy of SAW harmonics up to GHz regime in photolithographed GaAs devices. J. Micromech. Microeng. 2017, 27, 125002. [Google Scholar] [CrossRef]
- Pirro, P.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 2021, 6, 1114–1135. [Google Scholar] [CrossRef]
- Leo, A.; Monteduro, A.G.; Rizzato, S.; Martina, L.; Maruccio, G. Identification and time-resolved study of ferrimagnetic spin-wave modes in a microwave cavity in the strong-coupling regime. Phys. Rev. B 2020, 101, 014439. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; In, S.; Lee, D.; Rhie, J.; Jeong, J.; Kim, D.-S.; Park, N. Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap. ACS Photonics 2018, 5, 278–283. [Google Scholar] [CrossRef]
- Meng, K.; Park, S.; Burnett, A.; Gill, T.; Wood, C.; Rosamond, M.; Li, L.; Chen, L.; Bacon, D.; Freeman, J. Increasing the sensitivity of terahertz split ring resonator metamaterials for dielectric sensing by localized substrate etching. J. Opt. Express 2019, 27, 23164–23172. [Google Scholar] [CrossRef]
- Pitchappa, P.; Ho, C.P.; Dhakar, L.; Lee, C. Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region. Optica 2015, 2, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Lapine, M.; Shadrivov, I.V.; Powell, D.A.; Kivshar, Y.S. Magnetoelastic metamaterials. Nat. Mater. 2012, 11, 30–33. [Google Scholar] [CrossRef]
- Albishi, A.M.; Alshebeili, S.A.; Ramahi, O.M. Three-Dimensional Split-Ring Resonators-Based Sensors for Fluid Detection. IEEE Sens. J. 2021, 21, 9138–9147. [Google Scholar] [CrossRef]
- Leo, A.; Monteduro, A.G.; Rizzato, S.; Milone, A.; Maruccio, G. Miniaturized Sensors for Detection of Ethanol in Water Based on Electrical Impedance Spectroscopy and Resonant Perturbation Method—A Comparative Study. Sensors 2022, 22, 2742. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Islam, M.T.; Hoque, A.; Soliman, M.S.; Bais, B.; Sahar, N.M.; Almalki, S.H. Tri Circle Split Ring Resonator Shaped Metamaterial With Mathematical Modeling for Oil Concentration Sensing. IEEE Access 2021, 9, 161087–161102. [Google Scholar] [CrossRef]
- Islam, M.T.; Ashraf, F.B.; Alam, T.; Misran, N.; Mat, K.B. A compact ultrawideband antenna based on hexagonal split-ring resonator for pH sensor application. Sensors 2018, 18, 2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abduljabar, A.A.; Yang, X.; Barrow, D.A.; Porch, A. Modelling and measurements of the microwave dielectric properties of microspheres. IEEE Trans. Microw. Theory Tech. 2015, 63, 4492–4500. [Google Scholar] [CrossRef]
- Lee, H.-J.; Lee, J.-H.; Moon, H.-S.; Jang, I.-S.; Choi, J.-S.; Yook, J.-G.; Jung, H.-I. A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules. Sens. Actuators B Chem. 2012, 169, 26–31. [Google Scholar] [CrossRef]
- Muñoz-Enano, J.; Vélez, P.; Gil, M.; Martín, F. Microfluidic reflective-mode differential sensor based on open split ring resonators (OSRRs). Int. J. Microw. Wirel. Technol. 2020, 12, 588–597. [Google Scholar] [CrossRef]
- Gan, H.-Y.; Zhao, W.-S.; Liu, Q.; Wang, D.-W.; Dong, L.; Wang, G.; Yin, W.-Y. Differential microwave microfluidic sensor based on microstrip complementary split-ring resonator (MCSRR) structure. IEEE Sens. J. 2020, 20, 5876–5884. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Wu, C.-Z. A novel microwave phased-and perturbation-injection-locked sensor with self-oscillating complementary split-ring resonator for finger and wrist pulse detection. IEEE Trans. Microw. Theory Tech. 2020, 68, 1933–1942. [Google Scholar] [CrossRef]
- Puentes, M.; Maasch, M.; Schubler, M.; Jakoby, R. Frequency multiplexed 2-dimensional sensor array based on split-ring resonators for organic tissue analysis. IEEE Trans. Microw. Theory Tech. 2012, 60, 1720–1727. [Google Scholar] [CrossRef]
- Piccinno, E.; Monteduro, A.G.; Dituri, F.; Rizzato, S.; Giannelli, G.; Maruccio, G. Validation of a Lab-on-Chip Assay for Measuring Sorafenib Effectiveness on HCC Cell Proliferation. Int. J. Mol. Sci. 2021, 22, 13090. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Monteduro, A.G.; Ameer, Z.; Martino, M.; Caricato, A.P.; Tasco, V.; Lekshmi, I.C.; Rinaldi, R.; Hazarika, A.; Choudhury, D.; Sarma, D.D.; et al. Dielectric investigation of high-k yttrium copper titanate thin films. J. Mater. Chem. C 2016, 4, 1080–1087. [Google Scholar] [CrossRef]
- Monteduro, A.G.; Rizzato, S.; Leo, C.; Karmakar, S.; Sirsi, F.; Leo, A.; Tasco, V.; Esposito, M.; Passaseo, A.; Caricato, A.P.; et al. Dielectric and Ferroelectric Response of Multiphase Bi-Fe-O Ceramics. Phys. Status Solidi A Appl. Mat. 2019, 216, 1800584. [Google Scholar] [CrossRef]
- Ameer, Z.; Monteduro, A.G.; Rizzato, S.; Caricato, A.P.; Martino, M.; Lekshmi, I.C.; Hazarika, A.; Choudhury, D.; Mazzotta, E.; Malitesta, C.; et al. Dielectrical performance of high-k yttrium copper titanate thin films for electronic applications. J. Mater. Sci.-Mater. Electron. 2018, 29, 7090–7098. [Google Scholar] [CrossRef]
- Monteduro, A.G.; Ameer, Z.; Rizzato, S.; Martino, M.; Caricato, A.P.; Tasco, V.; Lekshmi, I.C.; Hazarika, A.; Choudhury, D.; Sarma, D.D.; et al. Investigation of high- k yttrium copper titanate thin films as alternative gate dielectrics. J. Phys. D Appl. Phys. 2016, 49, 405303. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Gan, L.; Cai, Q. A Dual-band Non-destructive Dielectric Measurement Sensor Based on Complementary Split-ring Resonator. Front. Phys. 2021, 9, 178. [Google Scholar] [CrossRef]
- Chang, K.; Hsieh, L.-H. Microwave Ring Circuits and Related Structures; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 156. [Google Scholar]
- Leo, A.; Monteduro, A.G.; Rizzato, S.; Ameer, Z.; Lekshmi, I.C.; Hazarika, A.; Choudhury, D.; Sarma, D.D.; Maruccio, G. RF and microwave dielectric response investigation of high-k yttrium copper titanate ceramic for electronic applications. Microelectron. Eng. 2018, 194, 15–18. [Google Scholar] [CrossRef]
- Mukherjee, S.; Shi, X.; Udpa, L.; Udpa, S.; Deng, Y.; Chahal, P. Design of a split-ring resonator sensor for near-field microwave imaging. IEEE Sens. J. 2018, 18, 7066–7076. [Google Scholar] [CrossRef]
- Isakov, D.; Stevens, C.J.; Castles, F.; Grant, P.S. A split ring resonator dielectric probe for near-field dielectric imaging. Sci. Rep. 2017, 7, 2038. [Google Scholar] [CrossRef] [Green Version]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Alignment and position sensors based on split ring resonators. Sensors 2012, 12, 11790–11797. [Google Scholar] [CrossRef]
- Horestani, A.K.; Abbott, D.; Fumeaux, C. Rotation sensor based on horn-shaped split ring resonator. IEEE Sens. J. 2013, 13, 3014–3015. [Google Scholar] [CrossRef]
- Lalas, A.X.; Kantartzis, N.V.; Zygiridis, T.T.; Theodoulidis, T.P. Tunable Metamaterial-Inspired Resonators for Optimal Wireless Power Transfer Schemes. In Proceedings of the COMSOL Conference 2017, Rotterdam, The Netherlands, 18–20 October 2017. [Google Scholar]
- Dong, Y.; Itoh, T. Metamaterial-based antennas. Proc. IEEE 2012, 100, 2271–2285. [Google Scholar] [CrossRef]
- Mark, R.; Rajak, N.; Mandal, K.; Das, S. Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application. AEU-Int. J. Electron. Commun. 2019, 100, 144–152. [Google Scholar] [CrossRef]
- Sheikh, Y.A.; Paracha, K.N.; Ahmad, S.; Bhatti, A.R.; Butt, A.D.; Rahim, S.K.A. Analysis of Compact Dual-Band Metamaterial-Based Patch Antenna Design for Wearable Application. Arab. J. Sci. Eng. 2021, 47, 3509–3518. [Google Scholar] [CrossRef]
- Islam, S.S.; Alam, T.; Faruque, M.R.I.; Islam, M.T. Design and analysis of a complementary split ring resonator (CSRR) metamaterial based antenna for wideband application. Sci. Eng. Compos. Mater. 2017, 24, 573–580. [Google Scholar] [CrossRef]
- Bora, P.; Mudaliar, M.; Dhanade, Y.B.; Sreelakshmi, K.; Paul, C.; Madhav, T. Metamaterial extended CSRR based monopole antenna for wideband applications. Int. J. Eng. Technol. 2018, 7, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Horestani, A.K.; Shaterian, Z.; Martín, F. Detection modalities of displacement sensors based on split ring resonators: Pros and cons. In Proceedings of the 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 9–13 September 2019; pp. 479–484. [Google Scholar]
- Sam, S.; Lim, S. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 657–660. [Google Scholar] [CrossRef]
- Martin, T.S.; Wang, F.; Chang, K. Theoretical and experimental investigation of novel varactor-tuned switchable microstrip ring resonator circuits. IEEE Trans. Microw. Theory Tech. 1988, 36, 1733–1739. [Google Scholar] [CrossRef]
- Martín, F.; Bonache, J. Application of RF-MEMS-based split ring resonators (SRRs) to the implementation of reconfigurable stopband filters: A review. Sensors 2014, 14, 22848–22863. [Google Scholar] [CrossRef]
- Entesari, K.; Rebeiz, G.M. A differential 4-bit 6.5-10-GHz RF MEMS tunable filter. IEEE Trans. Microw. Theory Tech. 2005, 53, 1103–1110. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Rebeiz, G.M. A miniature 8–16 GHz packaged tunable frequency and bandwidth RF MEMS filter. In Proceedings of the 2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Singapore, 9 January–11 December 2009; pp. 249–252. [Google Scholar]
- Abbaspour-Tamijani, A.; Dussopt, L.; Rebeiz, G.M. Miniature and tunable filters using MEMS capacitors. IEEE Trans. Microw. Theory Tech. 2003, 51, 1878–1885. [Google Scholar] [CrossRef]
- Giusti, D.; Ferrera, M.; Prelini, C.L. Piezoelectric Actuator Provided with a Deformable Structure Having Improved Mechanical Properties and Fabrication Method There of Google Patents. Patent EP3907178A1, 10 November 2020. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA; p. 2015.
- Saha, C.; Siddiqui, J.Y. A comparative analyis for split ring resonators of different geometrical shapes. In Proceedings of the 2011 IEEE Applied Electromagnetics Conference (AEMC), Kolkata, India, 18–22 December 2011; pp. 1–4. [Google Scholar]
- Terman, F.E. Radio Engineers’ Handbook; McGraw-Hill Co.: New York, NY, USA, 1943. [Google Scholar]
- Schneider, M.V. Microstrip lines for microwave integrated circuits. Bell Syst. Tech. J. 1969, 48, 1421–1444. [Google Scholar] [CrossRef]
- Hammerstad, E.O. Equations for microstrip circuit design. In Proceedings of the 1975 5th European Microwave Conference, Hamburg, Germany, 1–4 September 1975; pp. 268–272. [Google Scholar]
- Saha, C.; Siddiqui, J. Estimation of the resonance frequency of conventional and rotational circular split ring resonators. In Proceedings of the 2009 Applied Electromagnetics Conference (AEMC), Kolkata, India, 14–16 December 2009; pp. 1–3. [Google Scholar]
- Soares, M.; Senos, A.; Mantas, P. Phase coexistence region and dielectric properties of PZT ceramics. J. Eur. Ceram. Soc. 2000, 20, 321–334. [Google Scholar] [CrossRef]
- Clayton, J.D. Nonlinear Mechanics of Crystals; Springer Science & Business Media: Berlin, Germany, 2010; Volume 177. [Google Scholar]
- Tang, X.; Hwang, Y.; Lin, J.; Rowe, W.S. Pneumatically tunable microwave split ring resonators. Sens. Actuators A Phys. 2019, 294, 37–44. [Google Scholar] [CrossRef]
- Rafi, M.A.; Wiltshire, B.D.; Zarifi, M.H. Wideband tunable modified split ring resonator structure using liquid metal and 3-D printing. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 469–472. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Q.; Chen, J.; Qi, M.Q.; Jiang, W.X.; Cui, T.J. A tunable metamaterial absorber using varactor diodes. New J. Phys. 2013, 15, 043049. [Google Scholar] [CrossRef]
- Bouyge, D.; Crunteanu, A.; Durán-Sindreu, M.; Pothier, A.; Blondy, P.; Bonache, J.; Orlianges, J.C.; Martín, F. Reconfigurable split rings based on MEMS switches and their application to tunable filters. J. Opt. 2012, 14, 114001. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.K.; Argyropoulos, C.; Kosta, Y. Pattern controlled and frequency tunable microstrip antenna loaded with multiple split ring resonators. IET Microw. Antennas Propag. 2018, 12, 390–394. [Google Scholar] [CrossRef]
- Shadrivov, I.V.; Morrison, S.K.; Kivshar, Y.S. Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt. Express 2006, 14, 9344–9349. [Google Scholar] [CrossRef]
- Keerthi, R.S.; Dhabliya, D.; Elangovan, P.; Borodin, K.; Parmar, J.; Patel, S.K. Tunable high-gain and multiband microstrip antenna based on liquid/copper split-ring resonator superstrates for C/X band communication. Phys. B Condens. Matter 2021, 618, 413203. [Google Scholar] [CrossRef]
- Bonacchini, G.E.; Omenetto, F.G. Reconfigurable microwave metadevices based on organic electrochemical transistors. Nat. Electron. 2021, 4, 424–428. [Google Scholar] [CrossRef]
- Park, W.-Y.; Lim, S. Bandwidth tunable and compact band-pass filter (BPF) using complementary split ring resonators (CSRRS) on substrate integrated waveguide (SIW). J. Electromagn. Waves Appl. 2010, 24, 2407–2417. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, D.; Cao, W.; Yang, T.; Xia, L.; Xu, R. Microwave tunable split ring resonator bandpass filter using nematic liquid crystal materials. Optik 2016, 127, 10216–10222. [Google Scholar] [CrossRef]
- Vidiborskiy, A.; Koshelets, V.; Filippenko, L.; Shitov, S.; Ustinov, A. Compacted tunable split-ring resonators. Appl. Phys. Lett. 2013, 103, 162602. [Google Scholar] [CrossRef] [Green Version]
- Asci, C.; Sadeqi, A.; Wang, W.; Rezaei Nejad, H.; Sonkusale, S. Design and implementation of magnetically–tunable quad–band filter utilizing split–ring resonators at microwave frequencies. Sci. Rep. 2020, 10, 1050. [Google Scholar] [CrossRef] [Green Version]
- Garapati, K.V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A. Poloidal and toroidal plasmons and fields of multilayer nanorings. Phys. Rev. B 2017, 95, 165422. [Google Scholar] [CrossRef] [Green Version]
- Colombelli, A.; Primiceri, E.; Rizzato, S.; Monteduro, A.G.; Maruccio, G.; Rella, R.; Manera, M.G. Nanoplasmonic Biosensing Approach for Endotoxin Detection in Pharmaceutical Field. Chemosensors 2021, 9, 10. [Google Scholar] [CrossRef]
- Bagherian, M.; Passian, A.; Kouchekian, S.; Siopsis, G. Quantum Hamiltonian for the surface charge density on a ring torus and radiative decay of plasmons. Phys. Rev. B 2020, 102, 085422. [Google Scholar] [CrossRef]
Displacement | Substrate Dimension (mm2) | (mm) | (mm) | (µm) | (µm) | Rest Resonance Frequency (GHz) | Bandwidth (GHz) | Minimum Quality Factor | |
---|---|---|---|---|---|---|---|---|---|
Linear | 10 × 10 | 2.25 | 2.65 | 100 | 250 | 300 | 3.642 GHz | 1.148 | 250 |
Angular | 10 × 10 | 2.25 | 2.65 | 100 | 250 | 300 | 3.642 GHz | 1.364 | 250 |
Linear (with MEMS) | 10 × 7 | 1.05 | 1.45 | 100 | 100 | 300 | 12.140 GHz | 0.370 | 380 |
Ref. | Device | Actuator | Rest Resonance Frequency | Modulation | Bandwidth | Minimum Quality Factor |
---|---|---|---|---|---|---|
[69] | E-coupled LC resonators | Varactor diode | 4.45 GHz | 27% Continuous | 1.19 GHz | <100 |
[72] | DSRR | Varactor diode | 2.42 GHz | 12% Continuous | 280 MHz | <100 |
[73] | CTSSR | p-i-n diode switch | 6.8 GHz | 1.5% Discrete | 100 MHz | 10 |
[74] | SSRs | Organic electrochemical transistor | 543 MHz | 4% Continuous | 22 MHz | … |
[75] | CDSSR | BPF | 7.8 GHz | Discrete | … | 5 |
[70] | DSSR | Cantilever MEMS | 10 GHz | 15% Continuous | 1.5 GHz | <100 |
[71] | TSSR | MEMS switches | 6.685 GHz | 2% Discrete | 112 MHz | <100 |
[67] | DSRR | Pneumatic membrane | 3.2 GHz | 28% Continuous | 890 MHz | <100 |
[68] | SSR | Liquid metal | 3.52 GHz | 30% Continuous | 1.05 GHz | 70 |
[76] | SRR | Nematic liquid crystal | 6.5 GHz | 12% Continuous | 750 MHz | <100 |
[77] | JSRR | SQUID | 11.5 GHz | 11% Continuous | 1.25 GHz | … |
[78] | SSRs | Magnetic switch | … | Selective | … | … |
Our work | DSRR | MEMS | 3.642 GHz 3.642 GHz 12.4 GHz | 31% 38% 3 % | 1.145 GHz 1.364 GHz 370 MHz | 250 250 380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leo, A.; Bramanti, A.P.; Giusti, D.; Quaglia, F.; Maruccio, G. Reconfigurable Split Ring Resonators by MEMS-Driven Geometrical Tuning. Sensors 2023, 23, 1382. https://doi.org/10.3390/s23031382
Leo A, Bramanti AP, Giusti D, Quaglia F, Maruccio G. Reconfigurable Split Ring Resonators by MEMS-Driven Geometrical Tuning. Sensors. 2023; 23(3):1382. https://doi.org/10.3390/s23031382
Chicago/Turabian StyleLeo, Angelo, Alessandro Paolo Bramanti, Domenico Giusti, Fabio Quaglia, and Giuseppe Maruccio. 2023. "Reconfigurable Split Ring Resonators by MEMS-Driven Geometrical Tuning" Sensors 23, no. 3: 1382. https://doi.org/10.3390/s23031382
APA StyleLeo, A., Bramanti, A. P., Giusti, D., Quaglia, F., & Maruccio, G. (2023). Reconfigurable Split Ring Resonators by MEMS-Driven Geometrical Tuning. Sensors, 23(3), 1382. https://doi.org/10.3390/s23031382