Fusion Graph Representation of EEG for Emotion Recognition
Abstract
:1. Introduction
- We propose the fusion connection of EEG signals for the first time, combining topological, functional, and effective connections, which proves its effectiveness in feature extraction.
- We propose a unified and generalizable architecture for fusion graph convolution, which proves its robustness and effectiveness in EEG emotion recognition.
- Extensive experiments are conducted on two benchmark datasets for 3-class and 4-class EEG-based emotion recognition. The experimental results show that our FGCN consistently outperforms all state-of-the-art models.
2. Related Work
2.1. Topological Connection
2.2. Functional Connection
2.3. Effective Connection
3. Method
3.1. Graph Construction
3.1.1. Topological Graph Construction
3.1.2. Functional Graph Construction
3.1.3. Causal Graph Construction
3.2. Graph Fusion Strategy
3.3. Fusion Graph Convolutional Neural Network
4. Result and Analysis
4.1. Datasets
4.2. Comparison with Other State-of-Art Methods
4.3. Ablation Study
4.3.1. The Effectiveness of Fusion Graph Representation
4.3.2. The Influence of Different Fusion Strategy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EEG | Electroencephalogram |
DE | Differential entropy |
DASM | Differential asymmetry |
DCAU | Differential caudally |
CNN | Convolutional neural network |
References
- Li, Y.; Guo, L.; Liu, Y.; Liu, J.; Meng, F. A Temporal-Spectral-Based Squeeze-and- Excitation Feature Fusion Network for Motor Imagery EEG Decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1534–1545. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Moon, S.E.; Lee, J.S. EEG-based video identification using graph signal modeling and graph convolutional neural network. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 3066–3070. [Google Scholar]
- Zhong, P.; Wang, D.; Miao, C. EEG-based emotion recognition using regularized graph neural networks. IEEE Trans. Affect. Comput. 2020, 13, 1290–1301. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Hua, C.; Wang, Q.; Liu, C. Graph analysis of functional brain network topology using minimum spanning tree in driver drowsiness. Cogn. Neurodynamics 2018, 12, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Khajehpour, H.; Parvaz, M.A.; Kouti, M.; Hosseini Rafsanjani, T.; Ekhtiari, H.; Bakht, S.; Noroozi, A.; Makkiabadi, B.; Mahmoodi, M. Effects of Transcranial Direct Current Stimulation on Attentional Bias to Methamphetamine Cues and Its Association With EEG-Derived Functional Brain Network Topology. Int. J. Neuropsychopharmacol. 2022, 25, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Huang, Z.; Sun, Z.; Zhang, Y.; Zhao, Q.; Cichocki, A.; Yang, Z.; Solé-Casals, J. Topological Network Analysis of Early Alzheimer’s Disease Based on Resting-State EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2164–2172. [Google Scholar] [CrossRef]
- Daly, I.; Nasuto, S.J.; Warwick, K. Brain computer interface control via functional connectivity dynamics. Pattern Recognit. 2012, 45, 2123–2136. [Google Scholar] [CrossRef]
- Rotem-Kohavi, N.; Oberlander, T.; Virji-Babul, N. Infants and adults have similar regional functional brain organization for the perception of emotions. Neurosci. Lett. 2017, 650, 118–125. [Google Scholar] [CrossRef]
- Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 2018, 11, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Tong, Y.; Heng, X. Phase-locking value based graph convolutional neural networks for emotion recognition. IEEE Access 2019, 7, 93711–93722. [Google Scholar] [CrossRef]
- Lun, X.; Jia, S.; Hou, Y.; Shi, Y.; Li, Y. GCNs-net: A graph convolutional neural network approach for decoding time-resolved eeg motor imagery signals. arXiv 2020, arXiv:2006.08924. [Google Scholar]
- Demir, A.; Koike-Akino, T.; Wang, Y.; Haruna, M.; Erdogmus, D. EEG-GNN: Graph Neural Networks for Classification of Electroencephalogram (EEG) Signals. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 1061–1067. [Google Scholar]
- Sun, S.; Li, X.; Zhu, J.; Wang, Y.; La, R.; Zhang, X.; Wei, L.; Hu, B. Graph Theory Analysis of Functional Connectivity in Major Depression Disorder With High-Density Resting State EEG Data. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Sohrabpour, A.; Ye, S.; Worrell, G.A.; Zhang, W.; He, B. Noninvasive electromagnetic source imaging and granger causality analysis: An electrophysiological connectome (eConnectome) approach. IEEE Trans. Biomed. Eng. 2016, 63, 2474–2487. [Google Scholar] [PubMed]
- Herrmann, C.S.; Strüber, D.; Helfrich, R.F.; Engel, A.K. EEG oscillations: From correlation to causality. Int. J. Psychophysiol. 2016, 103, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Hesse, W.; Möller, E.; Arnold, M.; Schack, B. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J. Neurosci. Methods 2003, 124, 27–44. [Google Scholar] [CrossRef]
- Uchida, T.; Fujiwara, K.; Inoue, T.; Maruta, Y.; Kano, M.; Suzuki, M. Analysis of VNS effect on EEG connectivity with granger causality and graph theory. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 861–864. [Google Scholar]
- Hejazi, M.; Motie Nasrabadi, A. Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using Granger causality and directed transfer function methods. Cogn. Neurodyn. 2019, 13, 461–473. [Google Scholar] [CrossRef]
- Hosseini, G.S.; Nasrabadi, A.M. Effective connectivity of mental fatigue: Dynamic causal modeling of EEG data. Technol. Healthc. 2019, 27, 343–352. [Google Scholar] [CrossRef]
- Ramakrishna, J.S.; Sinha, N.; Ramasangu, H. Classification of Human Emotions using EEG-based Causal Connectivity Patterns. In Proceedings of the 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Melbourne, Australia, 13–15 October 2021; pp. 1–8. [Google Scholar]
- Kong, W.; Qiu, M.; Li, M.; Jin, X.; Zhu, L. Causal Graph Convolutional Neural Network For Emotion Recognition. IEEE Trans. Cogn. Dev. Syst. 2022, 1. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.; Niu, Y.; Li, C. Epilepsy Classification for Mining Deeper Relationships between EEG Channels based on GCN. In Proceedings of the 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), Chongqing, China, 10–12 July 2020; pp. 701–706. [Google Scholar]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [Green Version]
- Salvador, R.; Suckling, J.; Coleman, M.R.; Pickard, J.D.; Menon, D.; Bullmore, E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 2005, 15, 1332–1342. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Granger, C.W. Testing for causality: A personal viewpoint. J. Econ. Dyn. Control. 1980, 2, 329–352. [Google Scholar] [CrossRef]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proceedings of the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Chung, F.R.; Graham, F.C. Spectral Graph Theory; Number 92; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- Zheng, W.L.; Lu, B.L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Zheng, W.L.; Liu, W.; Lu, Y.; Lu, B.L.; Cichocki, A. Emotionmeter: A multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 2018, 49, 1110–1122. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Nie, D.; Lu, B.L. EEG-based emotion recognition using frequency domain features and support vector machines. In Proceedings of the International Conference on Neural Information Processing (ICONIP 2011), Shanghai, Chin, 13–17 November 2011; pp. 734–743. [Google Scholar]
- Li, Y.; Zheng, W.; Wang, L.; Zong, Y.; Cui, Z. From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition. IEEE Trans. Affect. Comput. 2019, 13, 568–578. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, L.; Zheng, W.; Zong, Y.; Qi, L.; Cui, Z.; Zhang, T.; Song, T. A novel bi-hemispheric discrepancy model for eeg emotion recognition. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 354–367. [Google Scholar] [CrossRef]
- Britanak, V.; Yip, P.C.; Rao, K.R. Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations; Elsevier: London, UK, 2010. [Google Scholar]
Dataset | SEED | SEED-IV | |||||
---|---|---|---|---|---|---|---|
Classifier | δ (%) | θ (%) | α (%) | β (%) | γ (%) | Total (%) | Total (%) |
SVM | 60.50/14.14 | 60.95/10.20 | 66.64/14.41 | 80.76/11.56 | 79.56/11.38 | 83.99/09.72 | 56.61/20.05 |
GCN | 72.75/10.85 | 74.40/08.23 | 66.64/14.41 | 83.24/09.93 | 83.36/09.43 | 87.40/09.20 | – |
DGCN | 74.25/11.42 | 71.52/05.99 | 73.46/12.17 | 83.65/10.17 | 85.73/10.64 | 90.40/08.49 | 69.88/16.29 |
R2G-STNN | 77.76/09.92 | 76.17/07.43 | 82.30/10.21 | 88.35/10.52 | 88.90/09.97 | 93.38/05.90 | – |
BiHDM | – | – | – | – | – | 93.12/06.06 | 74.35/14.09 |
FGCN | 78.91/10.61 | 76.96/06.77 | 77.64/12.44 | 87.13/06.39 | 89.87/10.12 | 94.10/07.34 | 77.14/15.71 |
Classifier | SVM [31] | GCN [27] | DGCN [9] | Ours |
---|---|---|---|---|
(%) | 48.87/10.49 | 57.07/06.75 | 55.93/09.14 | 63.36/07.94 |
(%) | 53.02/12.76 | 54.80/09.09 | 56.12/07.86 | 62.84/09.33 |
(%) | 59.81/14.67 | 62.97/13.43 | 64.27/12.72 | 66.72/12.08 |
(%) | 75.03/15.72 | 74.97/13.40 | 73.61/14.35 | 81.27/12.75 |
(%) | 73.59/16.57 | 73.28/13.67 | 73.50/16.60 | 82.57/13.83 |
Total (%) | 72.81/16.57 | 76.00/13.32 | 78.45/11.84 | 78.67/11.57 |
Classifier | SVM [31] | GCN [27] | DGCN [9] | Ours |
---|---|---|---|---|
(%) | 55.92/14.62 | 62.60/12.88 | 63.18/13.48 | 67.81/11.94 |
(%) | 57.16/10.77 | 65.05/08.35 | 62.55/07.96 | 64.47/08.98 |
(%) | 61.37/15.97 | 66.41/11.06 | 67.71/10.74 | 67.73/12.81 |
(%) | 75.17/15.58 | 77.28/11.55 | 78.68/10.81 | 79.93/10.64 |
(%) | 76.44/15.41 | 18.68/13.00 | 80.05/13.03 | 83.17/11.90 |
Total (%) | 77.38/11.98 | 79.02/11.27 | 81.91/10.06 | 84.10/10.63 |
Fusion Strategy | Accuracy |
---|---|
Point-by-point Addition (%) | 94.10 |
Point-by-point Product (%) | 91.78 |
Kronecker Product (%) | 90.56 |
Kronecker Addition (%) | 91.41 |
Cross Diffusion Process (%) | 90.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Qiu, M.; Kong, W.; Zhu, L.; Ding, Y. Fusion Graph Representation of EEG for Emotion Recognition. Sensors 2023, 23, 1404. https://doi.org/10.3390/s23031404
Li M, Qiu M, Kong W, Zhu L, Ding Y. Fusion Graph Representation of EEG for Emotion Recognition. Sensors. 2023; 23(3):1404. https://doi.org/10.3390/s23031404
Chicago/Turabian StyleLi, Menghang, Min Qiu, Wanzeng Kong, Li Zhu, and Yu Ding. 2023. "Fusion Graph Representation of EEG for Emotion Recognition" Sensors 23, no. 3: 1404. https://doi.org/10.3390/s23031404
APA StyleLi, M., Qiu, M., Kong, W., Zhu, L., & Ding, Y. (2023). Fusion Graph Representation of EEG for Emotion Recognition. Sensors, 23(3), 1404. https://doi.org/10.3390/s23031404