Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation, Protocol and Data Acquisition
2.2.1. Instrumentation
2.2.2. Data Collection Protocol
2.3. Model Development and Evaluation
2.3.1. Data Preprocessing
2.3.2. Model Development
2.3.3. Model Evaluation
2.4. Gait Parameter Extraction
2.4.1. Common Gait Parameters (Identifying Changes between PRE-NP and POST-P)
2.4.2. Target Gait Parameters (MID-P and POST-NP Analysis)
2.4.3. Statistical Analysis
3. Results
3.1. Gait Classification Results
3.2. Gait Parameters
4. Discussion
4.1. Classification of Pre-Training (PRE-NP) and Post-Training (POST-P) Gait
4.2. Classifier Performance for MID-P/POST-NP and Non-Changes in Gait
4.2.1. Classification of Gait during Training (MID-P) and after PT Session (POST-NP)
4.2.2. Classification of Non-Significant Changes in Gait Parameters
4.3. Distance Metric Comparison
4.4. Summary of Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LLA | Lower-Limb Amputee |
ML | Machine Learning |
PT | Physiotherapy/Physiotherapist |
DTW | Dynamic Time Warping |
kNN | k-Nearest Neighbors |
PRE-NP | PRE-gait training session, No Physiotherapist cueing |
MID-P | MIDpoint of gait training session, Physiotherapist cueing |
POST-P | POST-gait training session, Physiotherapist cueing |
POST-NP | POST-gait training session, No Physiotherapist cueing |
References
- Esquenazi, A.; Digiacomo, R. Rehabilitation After Amputation. J. Am. Podiatr. Med. Assoc. 2001, 91, 13–22. [Google Scholar] [CrossRef]
- Ku, P.X.; Abu Osman, N.A.; Wan Abas, W.A.B. Balance control in lower extremity amputees during quiet standing: A systematic review. Gait Posture 2014, 39, 672–682. [Google Scholar] [CrossRef] [Green Version]
- Highsmith, M.J.; Andrews, C.R.; Millman, C.; Fuller, A.; Kahle, J.T.; Klenow, T.D.; Lewis, K.L.; Bradley, R.C.; Orriola, J.J. Gait Training Interventions for Lower Extremity Amputees: A Systematic Literature Review. Technol. Innov. 2016, 18, 99–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowker, J.H.; Michael, J.W. Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles, 2nd ed.; Mosby Year Book: St. Louis, MO, USA, 1992. [Google Scholar]
- Zhou, H.; Ji, N.; Samuel, O.W.; Cao, Y.; Zhao, Z.; Chen, S.; Li, G. Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm. Sensors 2016, 16, 1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2012, 14, 3362–3394. [Google Scholar] [CrossRef] [Green Version]
- Ledoux, E.D. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy. IEEE Trans. Biomed. Eng. 2018, 65, 2704–2712. [Google Scholar] [CrossRef]
- Maqbool, H.F.; Husman, M.A.B.; Awad, M.I.; Abouhossein, A.; Iqbal, N.; Dehghani-Sanij, A.A. A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1500–1509. [Google Scholar] [CrossRef]
- Simonetti, E.; Villa, C.; Bascou, J.; Vannozzi, G.; Bergamini, E.; Pillet, H. Gait event detection using inertial measurement units in people with transfemoral amputation: A comparative study. Med. Biol. Eng. Comput. 2019, 58, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.Z.-H.; Wong, D.W.-C.; Lam, W.K.; Wan, A.H.-P.; Lee, W.C.-C. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review. Sensors 2016, 16, 434. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Feng, Y.; Chen, B.; Wang, Q.; Wei, K. Improving postural stability among people with lower-limb amputations by tactile sensory substitution. J. Neuroeng. Rehabil. 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.-Z. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef]
- Zhang, W.; Smuck, M.; Legault, C.; Ith, M.A.; Muaremi, A.; Aminian, K. Simple Gait Symmetry Measures Based on Foot Angular Velocity: Analysis in Post Stroke Patients. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5442–5445. [Google Scholar] [CrossRef]
- Kobsar, D.; Masood, Z.; Khan, H.; Khalil, N.; Kiwan, M.Y.; Ridd, S.; Tobis, M. Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis—A Scoping Review. Sensors 2020, 20, 7143. [Google Scholar] [CrossRef]
- Baghdadi, A.; Megahed, F.M.; Esfahani, E.T.; Cavuoto, L.A. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task. Ergonomics 2018, 61, 1116–1129. [Google Scholar] [CrossRef]
- Cuzzolin, F.; Sapienza, M.; Esser, P.; Saha, S.; Franssen, M.M.; Collett, J.; Dawes, H. Metric learning for Parkinsonian identification from IMU gait measurements. Gait Posture 2017, 54, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.-C.; Sugiarto, T.; Lin, Y.-J.; Yang, F.-C.; Lin, Z.-Y.; Sun, C.-T.; Hsu, C.-L.; Chou, K.-N. Multiple-Wearable-Sensor-Based Gait Classification and Analysis in Patients with Neurological Disorders. Sensors 2018, 18, 3397. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Colabianchi, N.; Wensman, J.; Gates, D.H. Wearable Sensors Quantify Mobility in People With Lower Limb Amputation During Daily Life. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Escamilla-Nunez, R.; Michelini, A.; Andrysek, J. Biofeedback Systems for Gait Rehabilitation of Individuals with Lower-Limb Amputation: A Systematic Review. Sensors 2020, 20, 1628. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, J.; Santos, C.P.; Moreno, J.C. Automatic recognition of gait patterns in human motor disorders using machine learning: A review. Med. Eng. Phys. 2018, 53, 1–12. [Google Scholar] [CrossRef]
- Caldas, R.; Fadel, T.; Buarque, F.; Markert, B. Adaptive predictive systems applied to gait analysis: A systematic review. Gait Posture 2020, 77, 75–82. [Google Scholar] [CrossRef]
- Janssen, D.; Schöllhorn, W.I.; Newell, K.M.; Jäger, J.M.; Rost, F.; Vehof, K. Diagnosing fatigue in gait patterns by support vector machines and self-organizing maps. Hum. Mov. Sci. 2011, 30, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kyrarini, M.; Ristic-Durrant, D.; Spranger, M.; Graser, A. Monitoring of gait performance using dynamic time warping on IMU-sensor data. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2016—Proceedings, Benevento, Italy, 15–18 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Alawneh, L.; Alsarhan, T.; Al-Zinati, M.; Al-Ayyoub, M.; Jararweh, Y.; Lu, H. Enhancing human activity recognition using deep learning and time series augmented data. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 10565–10580. [Google Scholar] [CrossRef]
- Ben Mansour, K.; Rezzoug, N.; Gorce, P. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Gait Posture 2015, 42, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Bötzel, K.; Olivares, A.; Cunha, J.P.; Sáez, J.M.G.; Weiss, R.; Plate, A. Quantification of gait parameters with inertial sensors and inverse kinematics. J. Biomech. 2018, 72, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Chau, T. A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods. Gait Posture 2001, 13, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Schöllhorn, W.; Nigg, B.; Stefanyshyn, D.; Liu, W. Identification of individual walking patterns using time discrete and time continuous data sets. Gait Posture 2001, 15, 180–186. [Google Scholar] [CrossRef] [PubMed]
- The Brigham and Women’s Hospital, Standard of Care: Lower Extremity Amputation. 2011. Available online: https://www.who.int/classifications/icf/en/ (accessed on 24 October 2019).
- MVN User Manual, Enschede, Netherlands. 2021. Available online: https://www.xsens.com/hubfs/Downloads/usermanual/MVN_User_Manual.pdf (accessed on 13 December 2022).
- Cloete, T.; Scheffer, C. Benchmarking of a full-body inertial motion capture system for clinical gait analysis. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’08—Personalized Healthcare through Technology, Vancouver, BC, Canada, 20–25 August 2008; pp. 4579–4582. [Google Scholar] [CrossRef]
- Lee, J.; Shin, S.Y.; Ghorpade, G.; Akbas, T.; Sulzer, J. Sensitivity comparison of inertial to optical motion capture during gait: Implications for tracking recovery. IEEE Int. Conf. Rehabil. Robot. 2019, 2019, 139–144. [Google Scholar] [CrossRef]
- Mourcou, Q.; Fleury, A.; Franco, C.; Klopcic, F.; Vuillerme, N. Performance Evaluation of Smartphone Inertial Sensors Measurement for Range of Motion. Sensors 2015, 15, 23168–23187. [Google Scholar] [CrossRef] [PubMed]
- Niswander, W.; Wang, W.; Kontson, K. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics. Sensors 2020, 20, 5993. [Google Scholar] [CrossRef]
- Smith, J.D.; Martin, P.E. Walking patterns change rapidly following asymmetrical lower extremity loading. Hum. Mov. Sci. 2007, 26, 412–425. [Google Scholar] [CrossRef]
- Xi, X.; Keogh, E.; Shelton, C.; Wei, L.; Ratanamahatana, C.A. Fast time series classification using numerosity reduction. In Proceedings of the 23rd International Conference on Machine Learning—ICML ’06, Pittsburgh, PA, USA, 25–29 June 2006; pp. 1033–1040. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, Y. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia. Comput. Biol. Med. 2019, 106, 33–39. [Google Scholar] [CrossRef]
- Kharb, A.; Saini, V.; Jain, Y.K.; Dhiman, S. A review of gait cycle and its parameters. IJCEM Int. J. Comput. Eng. Manag. 2011, 13, 2230–7893. [Google Scholar]
- Spatiotemporal Gait Parameters. Available online: https://help.plantiga.com/spatiotemporal-gait-parameters (accessed on 23 October 2022).
- Sagawa, Y.; Turcot, K.; Armand, S.; Thevenon, A.; Vuillerme, N.; Watelain, E. Biomechanics and physiological parameters during gait in lower-limb amputees: A systematic review. Gait Posture 2011, 33, 511–526. [Google Scholar] [CrossRef]
- Yang, L.; Dyer, P.; Carson, R.; Webster, J.; Foreman, K.B.; Bamberg, S. Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait. Gait Posture 2012, 36, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Hilderley, A.J.; Fehlings, D.; Lee, G.W.; Wright, F.V. Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: Design and methods of a two group randomized controlled cross-over trial. Springerplus 2016, 5, 1886. [Google Scholar] [CrossRef] [Green Version]
- Weygers, I.; Kok, M.; Konings, M.; Hallez, H.; De Vroey, H.; Claeys, K. Inertial Sensor-Based Lower Limb Joint Kinematics: A Methodological Systematic Review. Sensors 2020, 20, 673. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Liu, Y.; Hu, X.; Tang, M.; Wang, L. Validity and Reliability of Inertial Measurement Units on Lower Extremity Kinematics During Running: A Systematic Review and Meta-Analysis. Sport. Med. Open 2022, 8, 86. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Demur, T.; Demura, S.-I. Relationship among Gait Parameters while Walking with Varying Loads. J. Physiol. Anthr. 2010, 29, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Stiglic, G.; Kocbek, P.; Fijacko, N.; Zitnik, M.; Verbert, K.; Cilar, L. Interpretability of machine learning-based prediction models in healthcare. WIREs Data Min. Knowl. Discov. 2020, 10, e1376. [Google Scholar] [CrossRef]
- Lee, L.; Grimson, W. Gait analysis for recognition and classification. In Proceedings of the 5th IEEE International Conference on Automatic Face Gesture Recognition, FGR 2002, Washington, DC, USA, 21 May 2002; pp. 155–162. [Google Scholar] [CrossRef]
- Ratanamahatana, C.A.; Keogh, E. Making Time-series Classification More Accurate Using Learned Constraints. In Proceedings of the 2004 SIAM International Conference on Data Mining (SDM), Lake Buena Vista, FL, USA, 22–24 April 2004. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, R.; Sarkar, S. Evaluation of Algorithms for Orientation Invariant Inertial Gait Matching. IEEE Trans. Inf. Secur. 2018, 14, 304–318. [Google Scholar] [CrossRef]
- Zhong, Y.; Deng, Y. Sensor orientation invariant mobile gait biometrics. In Proceedings of the IEEE International Joint Conference on Biometrics, Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–8. [Google Scholar] [CrossRef]
Participant | Age (Years) | Height (cm) | Weight (kg) | Prosthetic Type (Side) | Years Since Amputation/Years with Current Device |
---|---|---|---|---|---|
1 | 13 | 169 | 85 | Transtibial (Left) | 2.5/1.0 |
2 | 19 | 150 | 59 | Van-Nes (Left) | 10.0/0.3 |
3 | 17 | 179 | 65 | Van-Nes (Left) | 1.5/0.5 |
4 | 11 | 148 | 39 | Transtibial (Both) | 11.0/0.3 |
5 | 9 | 120 | 24 | Hip Orthotic (Right) | 6.0/0.1 |
Participant | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Mean Var. PRE-NP | 0.1799 | 0.0367 | 0.0383 | 0.4180 | 0.1978 |
Mean Var. POST-P | 0.1861 | 0.0353 | 0.0816 | 0.4920 | 0.1136 |
F-value | 1.0347 | 1.0397 | 2.1276 | 1.1770 | 1.7413 |
Euclidean Distance | Dynamic Time Warping (DTW) | |||
---|---|---|---|---|
Trials | % Classified PRE-NP | % Classified POST-P | % Classified PRE-NP | % Classified POST-P |
P1 | ||||
PRE-NP | 0.989 | 0.011 | 1.000 | 0.000 |
MID-P | 0.480 | 0.520 | 0.720 | 0.280 |
POST-P | 0.043 | 0.957 | 0.086 | 0.914 |
POST-NP | 0.826 | 0.174 | 0.652 | 0.348 |
F1 Score | 0.973 | 0.959 | ||
P2 | ||||
PRE-NP | 0.982 | 0.018 | 0.982 | 0.018 |
MID-P | 0.000 | 1.000 | 0.000 | 1.000 |
POST-P | 0.000 | 1.000 | 0.016 | 0.984 |
POST-NP | 0.000 | 1.000 | 0.000 | 1.000 |
F1 Score | 0.991 | 0.983 | ||
P3 | ||||
PRE-NP | 0.911 | 0.089 | 0.918 | 0.082 |
MID-P | 0.368 | 0.632 | 0.544 | 0.456 |
POST-P | 0.478 | 0.522 | 0.483 | 0.517 |
POST-NP | 0.585 | 0.415 | 0.577 | 0.423 |
F1 Score | 0.763 | 0.765 | ||
P4 | ||||
PRE-NP | 0.995 | 0.005 | 0.984 | 0.016 |
MID-P | 0.500 | 0.500 | 0.889 | 0.111 |
POST-P | 0.134 | 0.866 | 0.126 | 0.874 |
POST-NP | 0.029 | 0.971 | 0.000 | 1.000 |
F1 Score | 0.935 | 0.933 | ||
P5 | ||||
PRE-NP | 0.980 | 0.020 | 0.993 | 0.007 |
MID-P | — | — | — | — |
POST-P | 0.005 | 0.995 | 0.005 | 0.995 |
POST-NP | 0.029 | 0.971 | 0.029 | 0.971 |
F1 Score | 0.987 | 0.994 |
Euclidean Distance | Dynamic Time Warping (DTW) | |||
---|---|---|---|---|
Trials | % Classified PRE-NP | % Classified POST-P | % Classified PRE-NP | % Classified POST-P |
PRE-NP | 0.774 | 0.226 | 0.699 | 0.301 |
MID-P | 0.286 | 0.714 | 0.286 | 0.714 |
POST-P | 0.221 | 0.779 | 0.285 | 0.715 |
POST-NP | 0.380 | 0.620 | 0.448 | 0.552 |
F1 Score | 0.776 | 0.705 |
Gait Parameter | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|
Stance-Time Symmetry Ratio | <0.001 | – | – | 0.005 | <0.001 |
Stance Time Pro. | <0.001 | <0.001 | – | – | – |
Stance Time Non-Pro. | – | <0.001 | – | 0.005 | <0.001 |
Double Stance Support | <0.001 | <0.001 | – | – | <0.001 |
Step Length Pro. | <0.001 | <0.001 | – | – | <0.001 |
Step Length Non Pro. | – | 0.02 | – | – | <0.001 |
Knee Flex/Ext Pro. | – | <0.001 | – | <0.001 | N/A |
Knee Flex/Ext Non-Pro. | – | – | – | – | <0.001 |
Hip Flex/Ext Pro. | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Hip Flex/Ext Non Pro. | <0.001 | <0.001 | 0.01 | <0.001 | |
Number of Parameters with Significant Changes | 5/10 | 8/10 | 2/10 | 5/10 * | 8/9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, G.; Andrysek, J. Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals. Sensors 2023, 23, 1412. https://doi.org/10.3390/s23031412
Ng G, Andrysek J. Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals. Sensors. 2023; 23(3):1412. https://doi.org/10.3390/s23031412
Chicago/Turabian StyleNg, Gabriel, and Jan Andrysek. 2023. "Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals" Sensors 23, no. 3: 1412. https://doi.org/10.3390/s23031412
APA StyleNg, G., & Andrysek, J. (2023). Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals. Sensors, 23(3), 1412. https://doi.org/10.3390/s23031412