HERAS: A Modular Matlab Tool Using Physical Optics for the Analysis of Reflector Antennas
Abstract
:1. Introduction
2. Numerical Techniques for the Analysis of Reflector Antennas
3. Description of HERAS
4. Applications of the Tool
4.1. Efficient Estimation of Antenna System Performance for VHTS Applications in a SFPB Scenario
4.2. Efficient Estimation of an Array Fed Reflector Antenna with a Large Number of Feeds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imbriale, W.A.; Gao, S.S.; Boccia, L. Space Antenna Handbook; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Palacin, B.; Fonseca, N.J.G.; Romier, M.; Contreres, R.; Angevain, J.C.; Toso, G.; Mangenot, C. Multibeam antennas for very high throughput satellites in Europe: Technologies and trends. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. [Google Scholar] [CrossRef]
- Fonseca, N.; Angevain, J.C.; Mangenot, C. Toward the Terabit Satellite: Antenna Design Trade-offs and Analyses. In Proceedings of the 33rd ESA Antenna Workshop, Noordwijk, The Netherlands, 18–21 October 2011. [Google Scholar]
- Bosshard, P.; Lafond, J.; Dubos, F.; Lepeltier, P.; Vourch, E.; Delepaux, F.; Labourdette, C.; Martin, L.; Navarre, G.; Feat, C. Thales Alenia Space HTS/V-HTS Multiple Beam Antennas sub-systems on the right track. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016. [Google Scholar] [CrossRef]
- Demers, Y.; Amyotte, E.; Glatre, K.; Godin, M.A.; Hill, J.; Liang, A.; Riel, M. Ka-band user antennas for VHTS GEO applications. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. [Google Scholar] [CrossRef]
- ViaSAT-1. Available online: https://www.viasat.com/space-innovation/satellite-fleet/viasat-1/ (accessed on 20 November 2022).
- Fenech, H.; Amos; Tomatis; Soumpholphkakdy. KA-SAT and future HTS systems. In Proceedings of the 2013 IEEE 14th International Vacuum Electronics Conference (IVEC), Paris, France, 21–23 May 2013; pp. 1–2. [Google Scholar] [CrossRef]
- Jupiter-1. Available online: https://www.hughes.com/products-and-technologies/high-throughput-satellite-fleet/jupiter-1 (accessed on 20 November 2022).
- Fonseca, N.J.G.; Mangenot, C. High-Performance Electrically Thin Dual-Band Polarizing Reflective Surface for Broadband Satellite Applications. IEEE Trans. Antennas Propag. 2016, 64, 640–649. [Google Scholar] [CrossRef]
- Fenech, H.; Amos, S.; Hirsch, A.; Soumpholphakdy, V. VHTS systems: Requirements and evolution. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 2409–2412. [Google Scholar] [CrossRef]
- Cooley, M. Phased Array Fed Reflector (PAFR) antenna architectures for space-based sensors. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015. [Google Scholar] [CrossRef] [Green Version]
- Kodheli, O.; Lagunas, E.; Maturo, N.; Sharma, S.K.; Shankar, B.; Montoya, J.F.M.; Duncan, J.C.M.; Spano, D.; Chatzinotas, S.; Kisseleff, S.; et al. Satellite Communications in the New Space Era: A Survey and Future Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 70–109. [Google Scholar] [CrossRef]
- Vidal, F.; Legay, H.; Goussetis, G.; Vigueras, M.; Tubau, S.; Gayrard, J. A methodology to benchmark flexible payload architectures in a megaconstellation use case. Int. J. Satell. Commun. Netw. 2020, 39, 29–46. [Google Scholar] [CrossRef]
- Angeletti, P.; De Gaudenzi, R. Heuristic Radio Resource Management for Massive MIMO in Satellite Broadband Communication Networks. IEEE Access 2021, 9, 147164–147190. [Google Scholar] [CrossRef]
- Rao, B. Handbook of Reflector Antennas and Feed Systems. Theory and Design of Reflectors; Artech House: Boston, MA, USA, 2013. [Google Scholar]
- GRASP. Available online: http://www.ticra.com/ (accessed on 20 November 2022).
- Jørgensen, E.; Viskum, H.H.; Sørensen, S.B.; Meincke, P. Efficient Analysis of Reflector Antennas using GRASP. In Proceedings of the 2011 IEEE AP-S Symposium, Spokane, WA, USA, 3–8 July 2011. [Google Scholar]
- Foged, L.; Saporetti, M.; Sierra-Castanner, M.; Jørgensen, E.; Voigt, T.; Calvano, F.; Tallini, D. Measurement and simulation of reflector antenna. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–5. [Google Scholar]
- CST Microwave Studio. Available online: http://www.cst.com/ (accessed on 20 November 2022).
- ANSYS HFSS. Available online: http://www.ansys.com/ (accessed on 20 November 2022).
- Altair FEKO. Available online: http://www.altair.com/ (accessed on 20 November 2022).
- Tang, W.; Goussetis, G.; Legay, H.; Bresciani, D.; Chiniard, R.; Fonseca, N.; Mangenot, C. Recent Developments in the Field of Polarising Reflectors for Multibeam Antenna Systems. In Proceedings of the 22nd Ka and Broadband Communications Conference, Cleveland, OH, USA, 17–20 October 2016. [Google Scholar]
- Tang, W.; Mercader-Pellicer, S.; Goussetis, G.; Legay, H.; Fonseca, N.J.G. Low-Profile Compact Dual-Band Unit Cell for Polarizing Surfaces Operating in Orthogonal Polarizations. IEEE Trans. Antennas Propag. 2017, 65, 1472–1477. [Google Scholar] [CrossRef]
- Mercader-Pellicer, S.; Goussetis, G.; Medero, G.M.; Legay, H.; Bresciani, D.; Fonseca, N.J.G. Cross-Polarization Reduction of Linear-to-Circular Polarizing Reflective Surfaces. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1527–1531. [Google Scholar] [CrossRef]
- Mercader-Pellicer, S.; Tang, W.; Bresciani, D.; Legay, H.; Fonseca, N.J.G.; Goussetis, G. Angularly Stable Linear-to-Circular Polarizing Reflectors for Multiple Beam Antennas. IEEE Trans. Antennas Propag. 2021, 69, 4380–4389. [Google Scholar] [CrossRef]
- Weiland, T. Finite Integration Method and Discrete Electromagnetism; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Silvester, P.P. Finite Elements for Electrical Engineers; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Harrington, R.F. Field Computation by Moment Methods; Wiley-IEEE Press: Hoboken, NJ, USA, 1993. [Google Scholar]
- Balanis, C. Antenna Theory: Analysis and Design; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Rahmat-Samii, Y. A comparison between GO/aperture-field and physical-optics methods of offset reflectors. IEEE Trans. Antennas Propag. 1984, 32, 301–306. [Google Scholar] [CrossRef]
- Wenhua, Y. Advanced Computational Electromagnetic Methods; Artech House: Norwood, MA, USA, 2015. [Google Scholar]
- Mercader-Pellicer, S.; Mederò, G.M.; Goussetis, G. Comparison of geometrical and physical optics for cross-polarisation prediction in reflector antennas. In Proceedings of the Active and Passive RF Devices (2017), London, UK, 8 May 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Gordon, W. High frequency approximations to the physical optics scattering integral. IEEE Trans. Antennas Propag. 1994, 42, 427–432. [Google Scholar] [CrossRef]
- Catedra, M.F.; Delgado, C.; Gonzalez Diego, I. New Physical Optics Approach for an Efficient Treatment of Multiple Bounces in Curved Bodies Defined by an Impedance Boundary Condition. IEEE Trans. Antennas Propag. 2008, 56, 728–736. [Google Scholar] [CrossRef]
- Arias, A.A.; Lorenzo, R.M.; Garcia-Pino, A. A novel fast algorithm for physical optics analysis of single and dual reflector antennas. IEEE Trans. Magn. 1996, 32, 910–913. [Google Scholar] [CrossRef]
- Keller, J.B. Geometrical Theory of Diffraction. J. Opt. Soc. Am. 1962, 52, 116–130. [Google Scholar] [CrossRef]
- Ufimtsev, P.Y. Physical Theory of Diffraction; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Umul, Y.Z. Modified theory of physical optics. Opt. Express 2004, 12, 4959–4972. [Google Scholar] [CrossRef] [PubMed]
- Hacivelioglu, F.; Sevgi, L.; Ufimtsev, P.Y. On the Modified Theory of Physical Optics. IEEE Trans. Antennas Propag. 2013, 61, 6115–6119. [Google Scholar] [CrossRef]
- Boag, A.; Letrou, C. Multilevel fast physical optics algorithm for radiation from non-planar apertures. IEEE Trans. Antennas Propag. 2005, 53, 2064–2072. [Google Scholar] [CrossRef]
- Letrou, C.; Boag, A. Generalized Multilevel Physical Optics (MLPO) for Comprehensive Analysis of Reflector Antennas. IEEE Trans. Antennas Propag. 2012, 60, 1182–1186. [Google Scholar] [CrossRef] [Green Version]
- Gendelman, A.; Brick, Y.; Boag, A. Multilevel Physical Optics Algorithm for Near Field Scattering. IEEE Trans. Antennas Propag. 2014, 62, 4325–4335. [Google Scholar] [CrossRef]
- Obelleiro-Basteiro, F.; Rodriguez, J.L.; Burkholder, R. An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities. IEEE Trans. Antennas Propag. 1995, 43, 356–361. [Google Scholar] [CrossRef]
- Pandolfo, L.; Vita, P.D.; Bandinelli, M.; Carluccio, G.; Albani, M. A Flexible, General-Purpose Code Based on the Iterative Physical Optics Algorithm: Analyzing Electromagnetic Scattering in Electrically Large Scenarios. [EM Programmer’s Notebook]. IEEE Antennas Propag. Mag. 2017, 59, 150–158. [Google Scholar] [CrossRef]
- Burkholder, R.; Tokgoz, C.; Reddy, C.; Pathak, P. Iterative physical optics: Its not just for cavities anymore [EM wave propagation]. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; Volume 1A, pp. 18–21. [Google Scholar] [CrossRef]
- Bucci, O.; Franceschetti, G.; Pierri, R. Reflector antenna fields–An exact aperture-like approach. IEEE Trans. Antennas Propag. 1981, 29, 580–586. [Google Scholar] [CrossRef]
- Lam, P.; Lee, S.W.; Hung, C.; Acosta, R. Strategy for reflector pattern calculation: Let the computer do the work. IEEE Trans. Antennas Propag. 1986, 34, 592–595. [Google Scholar] [CrossRef]
- Cramer, P.; Imbriale, W. Speed up of near-field physical optics scattering calculations by use of the sampling theorem. IEEE Trans. Magn. 1994, 30, 3156–3159. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.; Pino, A.; Vega, I.; Arias, M.; Rubinos, O. ICARA: Induced-current analysis of reflector antennas. IEEE Antennas Propag. Mag. 2005, 47, 92–100. [Google Scholar] [CrossRef]
- Mercader-Pellicer, S. Analysis and Design of Linear-to-Circular Polarising Reflector Antennas Exploiting Periodic Metallodielectric Arrays. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 2018. [Google Scholar]
- MALTAB. Available online: http://www.mathworks.com/ (accessed on 20 November 2022).
- Zhou, M.; Sorensen, S.B.; Jorgensen, E.; Meincke, P.; Kim, O.S.; Breinbjerg, O. An Accurate Technique for Calculation of Radiation from Printed Reflectarrays. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1081–1084. [Google Scholar] [CrossRef]
- Mercader-Pellicer, S.; Rigobello, F.; Goussetis, G.; Dufour, L.; Bresciani, D.; Legay, H.; Fonseca, N.J.G. Dual Ka-Band Multiple Beam Reflector Antenna for Western European Coverage. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–4. [Google Scholar]
- Mercader-Pellicer, S.; Goussetis, G.; Medero, G.M.; Bresciani, D.; Legay, H.; Fonseca, N.J.G. Optimisation by unit-cell rotation of linear-to-circular polarising reflectors for multiple primary feeds. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Mercader-Pellicer, S.; Goussetis, G.; Medero, G.M.; Bresciani, D.; Legay, H.; Fonseca, N.J.G. Optimisation by unit-cell rotation of linear-to-circular polarising reflectors for practical primary feeds. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Baldominos, A.; Fonseca, N.J.G.; Mengali, A.; Goussetis, G. Efficient Estimation of Antenna System Performance for Multibeam Very High Throughput Satellites. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021. [Google Scholar] [CrossRef]
- Hill, J.; Demers, Y.; Liang, A.; Amyotte, É.; Glâtre, K.; Richard, S. Multibeam antenna architectures for flexible capacity allocation. In Proceedings of the 39th ESA Antenna Workshop on Innovative Antenna Systems and Technologies for Future Space Missions, Noordwijk, The Netherlands, 2–5 October 2018. [Google Scholar]
- Fonseca, N.J.G.; Girard, E.; Legay, H. Doubly Curved Reflector Design for Hybrid Array Fed Reflector Antennas. IEEE Trans. Antennas Propag. 2018, 66, 2079–2083. [Google Scholar] [CrossRef]
- Angeletti, P.; De Gaudenzi, R. A Pragmatic Approach to Massive MIMO for Broadband Communication Satellites. IEEE Access 2020, 8, 132212–132236. [Google Scholar] [CrossRef]
- European Software-Defined Satellite Ready to Start Service. Available online: https://www.esa.int/Applications/Telecommunications_Integrated_Applications/European_software-defined_satellite_ready_to_start_service/ (accessed on 20 November 2022).
- Thales Alenia Space Put on Track Its Space Inspire Product Line. Available online: https://www.thalesgroup.com/en/worldwide/space/press-release/thales-alenia-space-put-track-its-space-inspire-product-line (accessed on 20 November 2022).
- OneSat. Available online: https://www.airbus.com/en/products-services/space/telecom/onesat (accessed on 20 November 2022).
- Baldominos, A.; Mengali, A.; Fonseca, N.J.G.; Goussetis, G. Evaluation of Array Fed Reflector Architecturesfor Broadband Satellite Missions. In Proceedings of the 2021 International Symposium on Antennas and Propagation (ISAP), Taipei, Taiwan, 19–22 October 2021. [Google Scholar]
- Baldominos, A.; Segneri, A.; Mengali, A.; Fonseca, N.J.; Goussetis, G. Comparative Study of Beamforming Techniques for VHTS Array Fed Reflector Antennas. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022. [Google Scholar]
- Lam, P.; Lee, S.-W.; Chang, D.; Lang, K. Directivity optimization of a reflector antenna with cluster feeds: A closed-form solution. IEEE Trans. Antennas Propag. 1985, 33, 1163–1174. [Google Scholar] [CrossRef]
- Yoo, T.; Goldsmith, A. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE J. Sel. Areas Commun. 2006, 24, 528–541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldominos, A.; Mercader-Pellicer, S.; Goussetis, G.; Mengali, A.; Fonseca, N.J.G. HERAS: A Modular Matlab Tool Using Physical Optics for the Analysis of Reflector Antennas. Sensors 2023, 23, 1425. https://doi.org/10.3390/s23031425
Baldominos A, Mercader-Pellicer S, Goussetis G, Mengali A, Fonseca NJG. HERAS: A Modular Matlab Tool Using Physical Optics for the Analysis of Reflector Antennas. Sensors. 2023; 23(3):1425. https://doi.org/10.3390/s23031425
Chicago/Turabian StyleBaldominos, Alejandro, Salvador Mercader-Pellicer, George Goussetis, Alberto Mengali, and Nelson J. G. Fonseca. 2023. "HERAS: A Modular Matlab Tool Using Physical Optics for the Analysis of Reflector Antennas" Sensors 23, no. 3: 1425. https://doi.org/10.3390/s23031425
APA StyleBaldominos, A., Mercader-Pellicer, S., Goussetis, G., Mengali, A., & Fonseca, N. J. G. (2023). HERAS: A Modular Matlab Tool Using Physical Optics for the Analysis of Reflector Antennas. Sensors, 23(3), 1425. https://doi.org/10.3390/s23031425