Characterization and Validation of Flexible Dry Electrodes for Wearable Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrical Impedance
2.2. Signal to Noise Ratio
2.3. In Vivo Acquisitions
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, H.P.d.; Carreiras, C.; Lourenço, A.R.; Fred, A.; Neves, R.C.d.; Ferreira, R. Off-the-person electrocardiography: Performance assessment and clinical correlation. Health Technol. 2015, 4, 309–318. [Google Scholar] [CrossRef]
- Lourenço, A.; Alves, A.P.; Carreiras, C.; Duarte, R.P.; Fred, A. CardioWheel: ECG Biometrics on the Steering Wheel. In Machine Learning and Knowledge Discovery in Databases; Bifet, A., May, M., Zadrozny, B., Gavalda, R., Pedreschi, D., Bonchi, F., Cardoso, J., Spiliopoulou, M., Eds.; Series Title: Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9286, pp. 267–270. [Google Scholar] [CrossRef]
- Silva, A.S.; Correia, M.V.; de Melo, F.; da Silva, H.P. Identity Recognition in Sanitary Facilities Using Invisible Electrocardiography. Sensors 2022, 22, 4201. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, A.; Hirota, M.; Sato, J.; Yokoyama, M.; Yanagisawa, M. A proposal for wearable controller device and finger gesture recognition using surface electromyography. In Proceedings of the SIGGRAPH Asia 2017 Posters; Association for Computing Machinery: New York, NY, USA, 2017; SA ’17; pp. 1–2. [Google Scholar] [CrossRef]
- Poon, C.C.Y.; Leung, E.Y.Y.; Lau, K.C.; Leung, B.H.K.; Zheng, Y.L.; Chiu, P.W.Y.; Yam, Y. A Novel User-Specific Wearable Controller for Surgical Robots. In Proceedings of the Design, User Experience, and Usability: Interactive Experience Design; Marcus, A., Ed.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 693–701. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, S.; Yu, J.; Shao, H.; Wen, H.; Zhang, H.; Xia, Z.; Zhang, Z.; Lee, C. Machine learning-augmented wearable triboelectric human-machine interface in motion identification and virtual reality. Nano Energy 2022, 103, 107766. [Google Scholar] [CrossRef]
- Alves, A.P.; Martins, J.; Silva, H.P.d.; Lourenço, A.R.; Fred, A.L.N.; Ferreira, H. Experimental Study And Evaluation of Paper-Based Inkjet Electrodes For ECG Signal Acquisition. In Proceedings of the PhyCS 2014—Proceedings of the International Conference on Physiological Computing Systems, Lisbon, Portugal, 7–9 January 2014; pp. 275–281. [Google Scholar]
- Acar, G.; Ozturk, O.; Golparvar, A.J.; Elboshra, T.A.; Böhringer, K.; Yapici, M.K. Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. Electronics 2019, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, J.; Yang, H.; Liu, Q.; Wang, M.; Xiong, F.; Chen, D.; Du, L. Effect of Fabric Electrode Surface Coating Medium on ECG Signal Quality under Dynamic and Static Conditions. Coatings 2023, 13, 108. [Google Scholar] [CrossRef]
- Lou, C.; Li, R.; Li, Z.; Liang, T.; Wei, Z.; Run, M.; Yan, X.; Liu, X. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring. Sensors 2016, 16, 1833. [Google Scholar] [CrossRef] [Green Version]
- Celik, N.; Manivannan, N.; Strudwick, A.; Balachandran, W. Graphene-Enabled Electrodes for Electrocardiogram Monitoring. Nanomaterials 2016, 6, 156. [Google Scholar] [CrossRef]
- Yoo, J.; Yan, L.; Lee, S.; Kim, H.; Yoo, H.J. A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 897–902. [Google Scholar] [CrossRef]
- Osório, D.N.; Pitães, A.; Gonçalves, N.; Freitas, R.; Ribeiro, C.; Sá, R.; Gamboa, H.; Silva, H.P. Comparison of Different Polymeric Materials for Mobile Off-the-Person ECG. In Proceedings of the 5th EAI International Conference on IoT Technologies for HealthCare, Guimarães, Portugal, 21–23 November 2018; Inácio, P.R.M., Duarte, A., Fazendeiro, P., Pombo, N., Eds.; Springer International Publishing: Cham, Switzerland, 2020. EAI/Springer Innovations in Communication and Computing. pp. 15–22. [Google Scholar] [CrossRef]
- Ritchie, H.; Spooner, F.; Roser, M. Causes of Death. Our World in Data. 2018. Available online: https://ourworldindata.org/causes-of-death (accessed on 7 July 2022).
- World Health Organization. The Top 10 Causes of Death. Technical Report. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 30 May 2022).
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Lymberis, A.; Rossi, D.d. Wearable EHealth Systems for Personalised Health Management: State of the Art and Future Challenges; IOS Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Alcalá, J.M.; Ureña, J.; Hernández, Á.; Gualda, D. Sustainable Homecare Monitoring System by Sensing Electricity Data. IEEE Sens J. 2017, 17, 7741–7749. [Google Scholar] [CrossRef]
- Kroll, R.R.; McKenzie, E.D.; Boyd, J.G.; Sheth, P.; Howes, D.; Wood, M.; Maslove, D.M.; for the WEARable Information Technology for hospital INpatients (WEARIT-IN) study group. Use of wearable devices for post-discharge monitoring of ICU patients: A feasibility study. J. Intensive Care 2017, 5, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zijlmans, M.; Flanagan, D.; Gotman, J. Heart Rate Changes and ECG Abnormalities During Epileptic Seizures: Prevalence and Definition of an Objective Clinical Sign. Epilepsia 2002, 43, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auer, R.; Bauer, D.C.; Marques-Vidal, P.; Butler, J.; Min, L.J.; Cornuz, J.; Satterfield, S.; Newman, A.B.; Vittinghoff, E.; Rodondi, N.; et al. Association of Major and Minor ECG Abnormalities with Coronary Heart Disease Events. JAMA 2012, 307, 1497–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baig, M.M.; Gholamhosseini, H.; Connolly, M.J. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. Med. Biol. Eng. Comput. 2013, 51, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Cheng, X.; Xiong, T.; Wang, X. Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. Biomed. Microdevices 2019, 21, 6. [Google Scholar] [CrossRef]
- Ribeiro, D.M.D.; Fu, L.S.; Carlos, L.A.D.; Cunha, J.P.S. A Novel Dry Active Biosignal Electrode Based on an Hybrid Organic-Inorganic Interface Material. IEEE Sens. J. 2011, 11, 2241–2245. [Google Scholar] [CrossRef]
- Biopotential Electrode Sensors in ECG/EEG/EMG Systems | Analog Devices. Available online: https://www.analog.com/media/en/technical-documentation/technical-articles/ECG-EEG-EMG_FINAL.pdf (accessed on 8 July 2022).
- Xie, L.; Yang, G.; Xu, L.; Seoane, F.; Chen, Q.; Zheng, L. Characterization of dry biopotential electrodes. In Proceedings of the IEEE EMBS, Osaka, Japan, 3–7 July 2013; Volume 2013. [Google Scholar] [CrossRef]
- Silva, H.; Scherer, R.; Sousa, J.; Londral, A. Towards Improving the Usability of Electromyographic Interfaces. In Proceedings of the Converging Clinical and Engineering Research on Neurorehabilitation, Toledo, Spain, 14–16 November 2012; Pons, J.L., Torricelli, D., Pajaro, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. Biosystems & Biorobotics. pp. 437–441. [Google Scholar] [CrossRef]
- Uter, W.; Schwanitz, H.J. Contact dermatitis from propylene glycol in ECG electrode gel. Contact Dermat. 1996, 34, 230–231. [Google Scholar] [CrossRef]
- Fonseca, C.; Cunha, J.P.S.; Martins, R.E.; Ferreira, V.M.; de Sa, J.P.M.; Barbosa, M.A.; Martins da Silva, A. A Novel Dry Active Electrode for EEG Recording. IEEE Trans. Biomed. Eng. 2007, 54, 162–165. [Google Scholar] [CrossRef]
- Pola, T.; Vanhala, J. Textile Electrodes in ECG Measurement. In Proceedings of the Sensor Networks and Information 2007 3rd International Conference on Intelligent Sensors, Melbourne, VIC, Australia, 3–6 December 2007; pp. 635–639. [Google Scholar] [CrossRef]
- Puurtinen, M.M.; Komulainen, S.M.; Kauppinen, P.K.; Malmivuo, J.A.V.; Hyttinen, J.A.K. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society. Annual Conference, New York, NY, USA, 30 August–3 September 2006; pp. 6012–6015. [Google Scholar] [CrossRef]
- Chlaihawi, A.; Narakathu, B.; Emamian, S.; Bazuin, B.; Atashbar, M. Development of printed and flexible dry ECG electrodes. Sens. Bio-Sens. Res. 2018, 20, 9–15. [Google Scholar] [CrossRef]
- Nigusse, A.B.; Malengier, B.; Mengistie, D.A.; Tseghai, G.B.; Van Langenhove, L. Development of Washable Silver Printed Textile Electrodes for Long-Term ECG Monitoring. Sensors 2020, 20, 6233. [Google Scholar] [CrossRef]
- Liu, B.; Tang, H.; Luo, Z.; Zhang, W.; Tu, Q.; Jin, X. Wearable carbon nanotubes-based polymer electrodes for ambulatory electrocardiographic measurements. Sens. Actuators Phys. 2017, 265, 79–85. [Google Scholar] [CrossRef]
- Liu, B.; Luo, Z.; Zhang, W.; Tu, Q.; Jin, X. Carbon nanotube-based self-adhesive polymer electrodes for wireless long-term recording of electrocardiogram signals. J. Biomater. Sci. Polym. Ed. 2016, 27, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.W.; Williams, S.M.; Yan, J.S.; Dewey, O.S.; Vitale, F.; Pasquali, M. Washable, Sewable, All-Carbon Electrodes and Signal Wires for Electronic Clothing. Nano Lett. 2021, 21, 7093–7099. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.C.; Huang, H.; Zhu, Y. Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv. 2015, 5, 11627–11632. [Google Scholar] [CrossRef]
- Reis, W. | Analog-to-Digital Converters|. p. 12. Available online: https://www.ele.uva.es/~lourdes/docencia/Sensores/Tema2/ADC/AD_Converters.pdf (accessed on 19 October 2022).
- Qin, Z.; Chen, H.; Chang, J. Signal-to-Noise Ratio Enhancement Based on Empirical Mode Decomposition in Phase-Sensitive Optical Time Domain Reflectometry Systems. Sensors 2017, 17, 1870. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.C.; Machado da Silva, J.; Trindade, I.G.; Martins, F. Characterization of the electrode-skin impedance of textile electrodes. In Proceedings of the Design of Circuits and Integrated Systems, Madrid, Spain, 26–28 November 2014; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pedro, G. Biosignalsplux Electrocardiography (ECG) Sensor User Manual. Technical Report. 2020. Available online: https://support.pluxbiosignals.com/wp-content/uploads/2021/10/biosignalsplux-Electrocardiography-ECG-User-Manual.pdf (accessed on 11 August 2022).
- Kendall™ H124SG Electrodes. Available online: https://www.cardinalhealth.co.uk/en_gb.html (accessed on 17 January 2023).
- Gan, Y.; Vauche, R.; Pons, J.F.; Rahajandraibe, W. Dry Electrode Materials for Electrocardiographic Monitoring. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; IEEE: Bordeaux, France, 2018; pp. 645–646. [Google Scholar] [CrossRef]
- Cattarello, P.; Merletti, R. Characterization of dry and wet Electrode-Skin interfaces on different skin treatments for HDsEMG. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Kaufmann, S.; Ardelt, G.; Ryschka, M. Measurements of Electrode Skin Impedances using Carbon Rubber Electrodes – First Results. J. Phys. Conf. Ser. 2013, 434, 012020. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, E.; Guerrero, F. The Biological Amplifier: The Road to Bioengineering. In Further Understanding of the Human Machine; World Scientific Publishing Company: Singapore, 2017; pp. 463–500. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Reljin, N.; Mills, C.; Mills, I.; Florian, J.P.; VanHeest, J.L.; Chon, K.H. Time-varying analysis of electrodermal activity during exercise. PLoS ONE 2018, 13, e0198328. [Google Scholar] [CrossRef] [Green Version]
- Elnahas, O.; Zahad, M.; Ahmed, S. Remote Online Vital Signs Processing For Patient Monitoring and Diagnosis. SOP Trans. Signal Process. 2015, 2, 36–50. [Google Scholar] [CrossRef]
- Němcová, A.; Smíšek, R.; Maršánová, L.; Smital, L.; Vítek, M. A Comparative Analysis of Methods for Evaluation of ECG Signal Quality after Compression. BioMed Res. Int. 2018, 2018, 1868519. [Google Scholar] [CrossRef]
- Kim, M.G.; Pan, S.B. A Study on User Recognition Using the Generated Synthetic Electrocardiogram Signal. Sensors 2021, 21, 1887. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.M.; Gul, M.; Majid, M.; Alnowami, M. Arrhythmia Classification of ECG Signals Using Hybrid Features. Comput. Math. Methods Med. 2018, 2018, e1380348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtin, A.E.; Burns, K.V.; Bank, A.J.; Netoff, T.I. QRS Complex Detection and Measurement Algorithms for Multichannel ECGs in Cardiac Resynchronization Therapy Patients. IEEE J. Transl. Eng. Health Med. 2018, 6, 1900211. [Google Scholar] [CrossRef] [PubMed]
Analog Discovery Digilent 2 | |
---|---|
Bandwidth | 30 MHz |
Resolution | 14-bits |
Input Impedance | 1 MΩ |
Sampling rate | 100 MS/s |
Electrode Material | SNR(dB) |
---|---|
Silver | 52.01 ± 4.86 |
Graphene | 48.96 ± 2.52 |
Carbon | 47.34 ± 2.84 |
Material | RMSE | CS | # Beats |
---|---|---|---|
Silver | 2522 | ||
Graphene | 2185 | ||
Carbon | 1288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, T.; da Silva, H.P. Characterization and Validation of Flexible Dry Electrodes for Wearable Integration. Sensors 2023, 23, 1468. https://doi.org/10.3390/s23031468
Nunes T, da Silva HP. Characterization and Validation of Flexible Dry Electrodes for Wearable Integration. Sensors. 2023; 23(3):1468. https://doi.org/10.3390/s23031468
Chicago/Turabian StyleNunes, Tiago, and Hugo Plácido da Silva. 2023. "Characterization and Validation of Flexible Dry Electrodes for Wearable Integration" Sensors 23, no. 3: 1468. https://doi.org/10.3390/s23031468
APA StyleNunes, T., & da Silva, H. P. (2023). Characterization and Validation of Flexible Dry Electrodes for Wearable Integration. Sensors, 23(3), 1468. https://doi.org/10.3390/s23031468