Autonomous Intersection Management: Optimal Trajectories and Efficient Scheduling
Abstract
:1. Introduction
2. Autonomous Intersection Management: Preliminaries
- Conflict zone: In this zone, the movement (origin–destination) trajectories intersect. In other words, it is the critical resource shared by all vehicles crossing the intersection, with a high potential risk of collision.
- Storage zone: It is located upstream of the conflict zone. It is the road before crossing the intersection.
- Exit zone: Downstream of the conflict zone. It allows the relief of the conflict zone.
- The accesses to the conflict zone are ordered (i.e., a sequence) according to the requests received from the CAVs via wireless communication.
- Each vehicle individually receives its own right of way concerning the sequence.
- Each CAV respects the received right of way by performing the suitable longitudinal control.
- Each vehicle instantaneously participates in the decision-making process by requesting the right of way and/or by communicating its current state.
3. Autonomous Intersection Management: Review
- Protocol: It refers to how two conflicting CAVs share the common space to plan their successive passages. This defines the longitudinal control problem of the second vehicle to avoid a collision with the former one.
- Policy: It defines how the passage sequence is negotiated between the CAVs under real-time constraints.
- Architecture: It refers to the level of involvement of CAVs in the decision-making process. The level varies based not only on the problem statement but also on the assumed safety level.
3.1. Protocols: Cruise Control
- Stop and Go: The second CAV receives a stop sign until the first one leaves the conflict zone.
- Reservation: The first CAV sends the time when it leaves the conflict space, and the second one manages to get through the area later.
- Virtual platoon: The second CAV considers the first one as a virtual obstacle and adjusts its speed accordingly.
3.1.1. Stop and Go
3.1.2. Reservation
3.1.3. Virtual Platoon
3.2. Scheduling
- Exact and heuristic approaches: Depending on the arrival times of CAVs, their speeds, and positions, the intersection server calculates the optimal (near-optimal) sequence and time for getting into the common space.
- Policy: Considering that the intersection is dynamic and because of the real-time constraints, simple efficient rules are defined.
3.2.1. Exact and Heuristic Approaches
- A comparison with the other scheduling approaches;
- Rolling horizon: The optimal schedule is computed for only a few CAVs.
3.2.2. Policies
3.3. Architecture
3.3.1. Decentralized Architecture
3.3.2. Centralized Architecture
3.4. Discussion
3.4.1. Variety of Concepts: Hybridization
3.4.2. Feasibility: Cyberphysical and Real-Time System
4. Simulation Study: Cruise Control vs. Scheduling
4.1. Studied System
4.2. Comparison of Protocols and Policies
4.3. Simulation Results
5. Discussion and Research Directions
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tyack, F. Street traffic signals, with particular reference to vehicle actuation. J. Inst. Electr. Eng. 1938, 82, 125–154. [Google Scholar] [CrossRef]
- Henry, J.J.; Farges, J.L.; Tuffal, J. The PRODYN real time traffic algorithm. In Control in Transportation Systems; Elsevier: Baden-Baden, Germany, 1984; pp. 305–310. [Google Scholar]
- Bång, K.; Nilsson, L. Optimal control of isolated traffic signals. IFAC Proc. Vol. 1976, 9, 173–184. [Google Scholar] [CrossRef]
- Sofronova, E.; Diveev, A. Traffic Flows Optimal Control Problem with Full Information. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 23–30 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Kulkarni, G.H.; Waingankar, P.G. Fuzzy logic based traffic light controller. In Proceedings of the 2007 International Conference on Industrial and Information Systems, Peradeniya, Sri Lanka, 9–11 August 2007; pp. 107–110. [Google Scholar]
- Zhang, Y.; Qiang, W.; Yang, Z. A new traffic signal control method based on hybrid colored petri net in isolated intersections. Int. J. Intell. Transp. Syst. Res. 2017, 15, 98–107. [Google Scholar] [CrossRef]
- Neuendorf, N.; Bruns, T. The vehicle platoon controller in the decentralised, autonomous intersection management of vehicles. In Proceedings of the IEEE International Conference on Mechatronics, ICM’04, Instanbul, Turkey, 3–5 June 2004; pp. 375–380. [Google Scholar]
- Perronnet, F.; Abbas-Turki, A.; Buisson, J.; El Moudni, A.; Zéo, R.; Ahmane, M. Cooperative intersection management: Real implementation and feasibility study of a sequence based protocol for urban applications. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 42–47. [Google Scholar] [CrossRef]
- Qian, B.; Zhou, H.; Lyu, F.; Li, J.; Ma, T.; Hou, F. Toward collision-free and efficient coordination for automated vehicles at unsignalized intersection. IEEE Internet Things J. 2019, 6, 10408–10420. [Google Scholar] [CrossRef]
- Katsaros, K.; Kernchen, R.; Dianati, M.; Rieck, D. Performance study of a Green Light Optimized Speed Advisory (GLOSA) application using an integrated cooperative ITS simulation platform. In Proceedings of the 2011 7th International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, 4–8 July 2011; pp. 918–923. [Google Scholar]
- Seredynski, M.; Dorronsoro, B.; Khadraoui, D. Comparison of green light optimal speed advisory approaches. In Proceedings of the 16th international IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 2187–2192. [Google Scholar]
- Li, J.; Dridi, M.; El-Moudni, A. Multi-vehicles green light optimal speed advisory based on the augmented lagrangian genetic algorithm. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 2434–2439. [Google Scholar]
- Seredynski, M.; Ruiz, P.; Szczypiorski, K.; Khadraoui, D. Improving bus ride comfort using GLOSA-based dynamic speed optimisation. In Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, AZ, USA, 19–23 May 2014; pp. 457–463. [Google Scholar]
- Sharara, M.; Ibrahim, M.; Chalhoub, G. Impact of network performance on GLOSA. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–6. [Google Scholar]
- Coppola, A.; Di Costanzo, L.; Pariota, L.; Santini, S.; Bifulco, G.N. An Integrated Simulation Environment to test the effectiveness of GLOSA services under different working conditions. Transp. Res. Part C Emerg. Technol. 2022, 134, 103455. [Google Scholar] [CrossRef]
- Naumann, R.; Rasche, R.; Tacken, J.; Tahedi, C. Validation and simulation of a decentralized intersection collision avoidance algorithm. Proceedings of Conference on Intelligent Transportation Systems, Boston, MA, USA, 9–12 November 1997; pp. 818–823. [Google Scholar]
- Perronnet, F.; Abbas-Turki, A.; El Moudni, A. A sequenced-based protocol to manage autonomous vehicles at isolated intersections. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 1811–1816. [Google Scholar]
- Ahmane, M.; Abbas-Turki, A.; Perronnet, F.; Wu, J.; El Moudni, A.; Buisson, J.; Zeo, R. Modeling and controlling an isolated urban intersection based on cooperative vehicles. Transp. Res. Part C Emerg. Technol. 2013, 28, 44–62. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.; d’Orey, P.M. On the impact of virtual traffic lights on carbon emissions mitigation. IEEE Trans. Intell. Transp. Syst. 2011, 13, 284–295. [Google Scholar] [CrossRef]
- Tonguz, O.K. Red light, green light—No light: Tomorrow’s communicative cars could take turns at intersections. IEEE Spectr. 2018, 55, 24–29. [Google Scholar] [CrossRef]
- Olaverri-Monreal, C.; Gomes, P.; Silvéria, M.K.; Ferreira, M. In-vehicle virtual traffic lights: A graphical user interface. In Proceedings of the 7th Iberian Conference on Information Systems and Technologies (CISTI 2012), Madrid, Spain, 20–23 June 2012; pp. 1–6. [Google Scholar]
- Zhang, R.; Schmutz, F.; Gerard, K.; Pomini, A.; Basseto, L.; Hassen, S.B.; Ishikawa, A.; Ozgunes, I.; Tonguz, O. Virtual traffic lights: System design and implementation. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar]
- Dresner, K.; Stone, P. Multiagent traffic management: A reservation-based intersection control mechanism. In Proceedings of the Autonomous Agents and Multiagent Systems, International Joint Conference on IEEE Computer Society, New York, NY, USA, 19–23 July 2004; Volume 3, pp. 530–537. [Google Scholar]
- Hult, R.; Zanon, M.; Frison, G.; Gros, S.; Falcone, P. Experimental validation of a semi-distributed sequential quadratic programming method for optimal coordination of automated vehicles at intersections. Optim. Control Appl. Methods 2020, 41, 1068–1096. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Jiang, H.; Cheng, Y.; Jiang, Y.; Ran, B. Integrated schedule and trajectory optimization for connected automated vehicles in a conflict zone. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1841–1851. [Google Scholar] [CrossRef]
- Malikopoulos, A.A.; Zhao, L. Optimal path planning for connected and automated vehicles at urban intersections. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019; pp. 1261–1266. [Google Scholar]
- Au, T.C.; Stone, P. Motion planning algorithms for autonomous intersection management. In Proceedings of the Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–12 July 2010; pp. 2–9. [Google Scholar]
- Wu, Y.; Chen, H.; Zhu, F. DCL-AIM: Decentralized coordination learning of autonomous intersection management for connected and automated vehicles. Transp. Res. Part C Emerg. Technol. 2019, 103, 246–260. [Google Scholar] [CrossRef]
- Campos, G.R.; Falcone, P.; Sjöberg, J. Traffic safety at intersections: A priority based approach for cooperative collision avoidance. In Proceedings of the FAST-Zero’15, Chalmers University Technology, Gothenburg, Sweden, 9–11 September 2015; pp. 9–15. [Google Scholar]
- Hult, R.; Zanon, M.; Gros, S.; Falcone, P. Optimal Coordination of Three Cars Approaching an Intersection. 2017. Available online: https://youtu.be/nYSXvnaNRK4 (accessed on 25 December 2022).
- Katriniok, A.; Kleibaum, P.; Joševski, M. Distributed Model Predictive Control for Intersection Automation Using a Parallelized Optimization Approach. IFAC PapersOnLine 2017, 50, 5940–5946. [Google Scholar] [CrossRef]
- Mirheli, A.; Tajalli, M.; Hajibabai, L.; Hajbabaie, A. A consensus-based distributed trajectory control in a signal-free intersection. Transp. Res. Part C Emerg. Technol. 2019, 100, 161–176. [Google Scholar] [CrossRef]
- Kloock, M.; Scheffe, P.; Marquardt, S.; Maczijewski, J.; Alrifaee, B.; Kowalewski, S. Distributed Model Predictive Intersection Control of Multiple Vehicles. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1735–1740. [Google Scholar] [CrossRef]
- Li, Z.; Chitturi, M.V.; Yu, L.; Bill, A.R.; Noyce, D.A. Sustainability effects of next-generation intersection control for autonomous vehicles. Transport 2015, 30, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Cassandras, C.G. Optimal control of autonomous vehicles for non-stop signalized intersection crossing. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 6988–6993. [Google Scholar]
- Namazi, E.; Li, J.; Lu, C. Intelligent intersection management systems considering autonomous vehicles: A systematic literature review. IEEE Access 2019, 7, 91946–91965. [Google Scholar] [CrossRef]
- Fayazi, S.A.; Vahidi, A. Vehicle-in-the-loop (VIL) verification of a smart city intersection control scheme for autonomous vehicles. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; pp. 1575–1580. [Google Scholar]
- Gregoire, J.; Bonnabel, S.; de La Fortelle, A. Priority-based coordination of robots. arXiv 2014, arXiv:1410.0879. [Google Scholar]
- de La Fortelle, A. Analysis of reservation algorithms for cooperative planning at intersections. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp. 445–449. [Google Scholar] [CrossRef]
- Khayatian, M.; Lou, Y.; Mehrabian, M.; Shirvastava, A. Crossroads+ A Time-aware Approach for Intersection Management of Connected Autonomous Vehicles. ACM Trans. Cyber-Phys. Syst. 2019, 4, 1–28. [Google Scholar]
- Zohdy, I.H.; Rakha, H. Game theory algorithm for intersection-based cooperative adaptive cruise control (CACC) systems. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 1097–1102. [Google Scholar]
- Quinlan, M.; Au, T.C.; Zhu, J.; Stiurca, N.; Stone, P. Bringing simulation to life: A mixed reality autonomous intersection. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 6083–6088. [Google Scholar]
- Du, W.; Abbas-Turki, A.; Koukam, A.; Jo, K.H. Safe Cooperative Intersection of Autonomous and Connected Robots: Trajectory and Schedule Optimization. In Proceedings of the 2022 International Workshop on Intelligent Systems (IWIS), Ulsan, Republic of Korea, 17–19 August 2022; pp. 1–7. [Google Scholar]
- Wu, J. Utilisation de la Conduite Coopérative Pour la Régulation de Trafic dans une Intersection. Ph.D. Thesis, Université de Technologie de Belfort-Montbeliard, Sevenans, France, 2011. [Google Scholar]
- Wu, J.; Perronnet, F.; Abbas-Turki, A. Cooperative vehicle-actuator system: A sequence-based framework of cooperative intersections management. IET Intell. Transp. Syst. 2014, 8, 352–360. [Google Scholar] [CrossRef]
- Medina, A.I.M.; Van de Wouw, N.; Nijmeijer, H. Automation of a t-intersection using virtual platoons of cooperative autonomous vehicles. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 1696–1701. [Google Scholar]
- Lee, G. A generalization of linear car-following theory. Oper. Res. 1966, 14, 595–606. [Google Scholar] [CrossRef]
- Gipps, P. Computer Program MULTSIM for Simulating Output from Vehicle Detectors on a Multi-Lane Signal-Controlled Road; Technical Report; Newcastle-Upon-Tyne University: Newcastle upon Tyne, UK, 1976. [Google Scholar]
- Perronnet, F. Régulation Coopérative des Intersections: Protocoles et Politiques. Ph.D. Thesis, Université de Technologie de Belfort-Montbeliard, Sevenans, France, 2015. [Google Scholar]
- Hao, X. Contribution à L’intersection Coopérative: Commandes Longitudinale et Latérale. Ph.D. Thesis, Université de Bourgogne Franche-Comté, Belfort, France, 2017. [Google Scholar]
- Lombard, A.; Perronnet, F.; Abbas-Turki, A.; El Moudni, A.; Bouyekhf, R. V2x for vehicle speed synchronization at intersections. In Proceedings of the 22nd Intelligent Transportation Systems World Congr., Bordeaux, France, 5–9 October 2015; pp. 255–262. [Google Scholar]
- Outay, F.; Galland, S.; Gaud, N.; Abbas-Turki, A. Simulation of connected driving in hazardous weather conditions: General and extensible multiagent architecture and models. Eng. Appl. Artif. Intell. 2021, 104, 104412. [Google Scholar] [CrossRef]
- Kesting, A.; Treiber, M.; Helbing, D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4585–4605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, A.I.M.; van de Wouw, N.; Nijmeijer, H. Cooperative intersection control based on virtual platooning. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1727–1740. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Li, S.E.; Bian, Y.; Li, S.; Ban, X.J.; Wang, J.; Li, K. Distributed conflict-free cooperation for multiple connected vehicles at unsignalized intersections. Transp. Res. Part C Emerg. Technol. 2018, 93, 322–334. [Google Scholar] [CrossRef]
- Bian, Y.; Li, S.E.; Ren, W.; Wang, J.; Li, K.; Liu, H.X. Cooperation of multiple connected vehicles at unsignalized intersections: Distributed observation, optimization, and control. IEEE Trans. Ind. Electron. 2019, 67, 10744–10754. [Google Scholar] [CrossRef]
- Daganzo, C.F.; Geroliminis, N. An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transp. Res. Part B Methodol. 2008, 42, 771–781. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Cassandras, C.G.; Li, L.; Feng, S. A bi-level cooperative driving strategy allowing lane changes. Transp. Res. Part C Emerg. Technol. 2020, 120, 102773. [Google Scholar] [CrossRef]
- Baratian-Ghorghi, F.; Zhou, H.; Wasilefsky, I. Impacts of Red Light Photo Enforcement Cameras on Clearance Lost Time at Signalized Intersections. In Proceedings of the Transportation Research Board 94th Annual Meeting, Washington, DC, USA, 11–15 January 2015; pp. 15–2245. [Google Scholar]
- Urbanik, T.; Tanaka, A.; Lozner, B.; Lindstrom, E.; Lee, K.; Quayle, S.; Beaird, S.; Tsoi, S.; Ryus, P.; Gettman, D.; et al. Signal Timing Manual; Transportation Research Board: Washington, DC, USA, 2015; Volume 1. [Google Scholar]
- Wu, J.; Abbas-Turki, A.; Correia, A.; El Moudni, A. Discrete intersection signal control. In Proceedings of the 2007 IEEE International Conference on Service Operations and Logistics, and Informatics, Philadelphia, PA, USA, 27–29 August 2007; pp. 1–6. [Google Scholar]
- Park, B.; Won, J.; Yun, I. Application of microscopic simulation model calibration and validation procedure: Case study of coordinated actuated signal system. Transp. Res. Rec. 2006, 1978, 113–122. [Google Scholar] [CrossRef]
- Yan, F.; Dridi, M.; El Moudni, A. Autonomous vehicle sequencing algorithm at isolated intersections. In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7 October 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Yan, F.; Dridi, M.; El-Moudni, A. New vehicle sequencing algorithms with vehicular infrastructure integration for an isolated intersection. Telecommun. Syst. 2012, 50, 325–337. [Google Scholar] [CrossRef]
- Hafizulazwan, B.M.N.M. Optimal scheduling of connected and automated vehicles at urban intersections via MILP. In Proceedings of the 61st Joint Conference on Automatic Control, Nanzan, Japan, 17–18 November 2018; pp. 160–165. [Google Scholar]
- McKeown, N. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Trans. Netw. 1999, 7, 188–201. [Google Scholar] [CrossRef] [Green Version]
- Wang, T. Parallel Machine Scheduling with Precedence Constraints. Ph.D. Thesis, École centrale de Nantes, Nantes, France, 2018. [Google Scholar]
- Chetto, H.; Chetto, M. Some results of the earliest deadline scheduling algorithm. IEEE Trans. Softw. Eng. 1989, 15, 1261. [Google Scholar] [CrossRef]
- Ding, J.; Xu, H.; Hu, J.; Zhang, Y. Centralized cooperative intersection control under automated vehicle environment. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 972–977. [Google Scholar]
- Kamal, M.A.S.; Imura, J.i.; Hayakawa, T.; Ohata, A.; Aihara, K. A vehicle-intersection coordination scheme for smooth flows of traffic without using traffic lights. IEEE Trans. Intell. Transp. Syst. 2014, 16, 1136–1147. [Google Scholar] [CrossRef]
- Chachuat, B. Mixed-integer linear programming (MILP): Model formulation. McMaster Univ. Dep. Chem. Eng. 2019, 17, 1–26. [Google Scholar]
- Fayazi, S.A.; Vahidi, A.; Luckow, A. Optimal scheduling of autonomous vehicle arrivals at intelligent intersections via MILP. In Proceedings of the 2017 American control conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 4920–4925. [Google Scholar]
- Müller, E.R.; Carlson, R.C.; Junior, W.K. Intersection control for automated vehicles with MILP. IFAC-PapersOnLine 2016, 49, 37–42. [Google Scholar] [CrossRef]
- Jiang, Y.; Zanon, M.; Hult, R.; Houska, B. Distributed algorithm for optimal vehicle coordination at traffic intersections. IFAC-PapersOnLine 2017, 50, 11577–11582. [Google Scholar] [CrossRef]
- Soleimaniamiri, S.; Li, X. Scheduling of heterogeneous connected automated vehicles at a general conflict area. In Proceedings of the Transportation Research Board (TRB) 98th Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- Wu, J.; Abbas-Turki, A.; El Moudni, A. Cooperative driving: An ant colony system for autonomous intersection management. Appl. Intell. 2012, 37, 207–222. [Google Scholar] [CrossRef]
- Christofides, N. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem; Technical Report; Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group: Pittsburgh, PA, USA, 1976. [Google Scholar]
- Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. Biosystems 1997, 43, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.; Jung, J.J. Ant colony optimization-based traffic routing with intersection negotiation for connected vehicles. Appl. Soft Comput. 2021, 112, 107828. [Google Scholar] [CrossRef]
- Cruz-Piris, L.; Lopez-Carmona, M.A.; Marsa-Maestre, I. Automated optimization of intersections using a genetic algorithm. IEEE Access 2019, 7, 15452–15468. [Google Scholar] [CrossRef]
- Li, J.; Dridi, M.; El-Moudni, A. A cooperative traffic control for the vehicles in the intersection based on the genetic algorithm. In Proceedings of the 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt), Tangier, Morocco, 24–26 October 2016; pp. 627–632. [Google Scholar]
- Lu, Q.; Kim, K.D. A genetic algorithm approach for expedited crossing of emergency vehicles in connected and autonomous intersection traffic. J. Adv. Transp. 2017, 2017, 7318917. [Google Scholar] [CrossRef]
- Yan, F.; Dridi, M.; El Moudni, A. Autonomous vehicle sequencing problem for a multi-intersection network: A genetic algorithm approach. In Proceedings of the 2013 International Conference on Advanced Logistics and Transport, Sousse, Tunisia, 29–31 May 2013; pp. 215–220. [Google Scholar]
- Yan, F.; Dridi, M.; El Moudni, A. An autonomous vehicle sequencing problem at intersections: A genetic algorithm approach. Int. J. Appl. Math. Comput. Sci. 2013, 23, 183–200. [Google Scholar] [CrossRef] [Green Version]
- Wolsey, L.A.; Nemhauser, G.L. Integer and Combinatorial Optimization; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 55. [Google Scholar]
- Zohdy, I.H.; Kamalanathsharma, R.K.; Rakha, H. Intersection management for autonomous vehicles using iCACC. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 1109–1114. [Google Scholar]
- Zohdy, I.H.; Rakha, H.A. Intersection management via vehicle connectivity: The intersection cooperative adaptive cruise control system concept. J. Intell. Transp. Syst. 2016, 20, 17–32. [Google Scholar] [CrossRef]
- Rakha, H.A.; Zohdy, I.; Kamalanathsharma, R.K. Agent-Based Game Theory Modeling for Driverless Vehicles at Intersections; United States Department of Transportation: Washington, DC, USA, 2013. [Google Scholar]
- Osborne, M.J. An Introduction to Game Theory; Oxford University Press: New York, NY, USA, 2004; Volume 3. [Google Scholar]
- Zhong, Z.; Nejad, M.; Lee, E.E. Autonomous and Semiautonomous Intersection Management: A Survey. IEEE Intell. Transp. Syst. Mag. 2020, 13, 53–70. [Google Scholar] [CrossRef]
- Lombard, A.; Perronnet, F.; Abbas-Turki, A.; El Moudni, A. Decentralized management of intersections of automated guided vehicles. IFAC-PapersOnLine 2016, 49, 497–502. [Google Scholar] [CrossRef]
- Au, T.C.; Shahidi, N.; Stone, P. Enforcing liveness in autonomous traffic management. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011; Volume 25. [Google Scholar]
- Zhang, K.; Zhang, D.; de La Fortelle, A.; Wu, X.; Gregoire, J. State-driven priority scheduling mechanisms for driverless vehicles approaching intersections. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2487–2500. [Google Scholar] [CrossRef]
- Carlino, D.; Boyles, S.D.; Stone, P. Auction-based autonomous intersection management. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 529–534. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.W.; Boyles, S.D. Intersection auctions and reservation-based control in dynamic traffic assignment. Transp. Res. Rec. 2015, 2497, 35–44. [Google Scholar] [CrossRef]
- Akcelik, R. Traffic Signals: Capacity and Timing Analysis; Australian Road Research Board: Vermont South, VIC, Australia, 1981. [Google Scholar]
- Rouphail, N.M.; Anwar, M.; Fambro, D.B.; Sloup, P.; Perez, C.E. Validation of generalized delay model for vehicle-actuated traffic signals. Transp. Res. Rec. 1997, 1572, 105–111. [Google Scholar] [CrossRef]
- Wu, J.; Yan, F.; Liu, J. Effectiveness Proving and Control of Platoon-Based Vehicular Cyber-Physical Systems. IEEE Access 2018, 6, 21140–21151. [Google Scholar] [CrossRef]
- Tallapragada P, C.J. Coordinated intersection traffic management. IFAC-PapersOnLine 2015, 48, 233–239. [Google Scholar] [CrossRef]
- Du, W.; Abbas-Turki, A.; Koukam, A.; Galland, S.; Gechter, F. On the V2X speed synchronization at intersections: Rule based System for extended virtual platooning. Procedia Comput. Sci. 2018, 141, 255–262. [Google Scholar] [CrossRef]
- Kumaravel, S.D.; Malikopoulos, A.A.; Ayyagari, R. Optimal coordination of platoons of connected and automated vehicles at signal-free intersections. IEEE Trans. Intell. Veh. 2021, 7, 186–197. [Google Scholar] [CrossRef]
- Szalay, Z.; Hamar, Z.; Simon, P. A multi-layer autonomous vehicle and simulation validation ecosystem axis: Zalazone. In Intelligent Autonomous Systems 15, Proceedings of the 15th International Conference IAS-15; Springer: Berlin/Heidelberg, Germany, 2018; pp. 954–963. [Google Scholar]
- Ansari, S.; Ahmad, J.; Aziz Shah, S.; Kashif Bashir, A.; Boutaleb, T.; Sinanovic, S. Chaos-based privacy preserving vehicle safety protocol for 5G Connected Autonomous Vehicle networks. Trans. Emerg. Telecommun. Technol. 2020, 31, e3966. [Google Scholar] [CrossRef]
- Molina-Masegosa, R.; Gozalvez, J. LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications. IEEE Veh. Technol. Mag. 2017, 12, 30–39. [Google Scholar] [CrossRef]
- Abunei, A.; Comşa, C.R.; Bogdan, I. Implementation of ETSI ITS-G5 based inter-vehicle communication embedded system. In Proceedings of the 2017 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017; pp. 1–4. [Google Scholar]
- Mavromatis, I.; Tassi, A.; Piechocki, R.J. Operating ITS-G5 DSRC over unlicensed bands: A city-scale performance evaluation. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–7. [Google Scholar]
- Lee, S.; Lee, J.H.; Koh, B. Threat analysis for an in-vehicle telematics control unit. Int. J. Internet Technol. Secur. Trans. 2018, 8, 653–663. [Google Scholar] [CrossRef]
- Knight, A. Hacking Connected Cars: Tactics, Techniques, and Procedures; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Tsubokura, M.; Kobayashi, T.; Nakashima, T.; Nouzawa, T.; Nakamura, T.; Zhang, H.; Onishi, K.; Oshima, N. Computational visualization of unsteady flow around vehicles using high performance computing. Comput. Fluids 2009, 38, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wang, Z.; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA J. Autom. Sin. 2020, 7, 315–329. [Google Scholar] [CrossRef]
- Baras, J.S.; Tan, X.; Hovareshti, P. Decentralized control of autonomous vehicles. In Proceedings of the 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Maui, HI, USA, 9–12 December 2003; Volume 2, pp. 1532–1537. [Google Scholar]
- VanMiddlesworth, M.; Dresner, K.; Stone, P. Replacing the stop sign: Unmanaged intersection control for autonomous vehicles. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, 12–16 May 2008; Volume 3, pp. 1413–1416. [Google Scholar]
- Grünewald, M.; Rust, C.; Witkowski, U. Using mini robots for prototyping intersection management of vehicles. In Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005); Springer: Berlin/Heidelberg, Germany, 2005; pp. 287–292. [Google Scholar]
- Wu, J.; Abbas-Turki, A.; El Moudni, A. Régulation du Trafic aux Intersections: Prise en Compte des Véhicules Prioritaires; Revue e-STA; Société de l’électricité, de l’électronique et des technologies de l’information et de la communication: Paris, France, 2009; Available online: https://www.semanticscholar.org/paper/R%C3%A9gulation-du-Trafic-aux-Intersections-%3A-Prise-en-Abbas-Turki-Moudni/766ae5ff45592e2a801efb2e4b8db20d14723c0d#citing-papers (accessed on 25 December 2022).
- Fok, C.L.; Hanna, M.; Gee, S.; Au, T.C.; Stone, P.; Julien, C.; Vishwanath, S. A Platform for Evaluating Autonomous Intersection Management Policies. In Proceedings of the 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems, Beijing, China, 17–19 April 2012; pp. 87–96. [Google Scholar] [CrossRef] [Green Version]
- Gholamhosseinian, A.; Seitz, J. A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles. IEEE Access 2022, 10, 7937–7972. [Google Scholar] [CrossRef]
- Khayatian, M.; Mehrabian, M.; Shrivastava, A. RIM: Robust Intersection Management for Connected Autonomous Vehicles. In Proceedings of the 2018 IEEE Real-Time Systems Symposium (RTSS), Nashville, TN, USA, 11–14 December 2018; pp. 35–44. [Google Scholar] [CrossRef]
- Khayatian, M.; Mehrabian, M.; Allamsetti, H.; Liu, K.W.; Huang, P.Y.; Lin, C.W.; Shrivastava, A. Cooperative driving of connected autonomous vehicles using responsibility-sensitive safety (RSS) rules. In Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems, Nashville, TN, USA, 19–21 May 2021; pp. 11–20. [Google Scholar]
- Wunderlich, R.; Liu, C.; Elhanany, I.; Urbanik, T. A novel signal-scheduling algorithm with quality-of-service provisioning for an isolated intersection. IEEE Trans. Intell. Transp. Syst. 2008, 9, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Ballardini, A.L.; Saz, Á.H.; Sotelo, M.Á. Model Guided Road Intersection Classification. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 703–709. [Google Scholar]
- Mahe, H.; Marraud, D.; Comport, A.I. Real-time rgb-d semantic keyframe slam based on image segmentation learning from industrial cad models. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil, 2–6 December 2019; pp. 147–154. [Google Scholar]
- Wang, C.; Huang, H.; Ji, Y.; Wang, B.; Yang, M. Vehicle localization at an intersection using a traffic light map. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1432–1441. [Google Scholar] [CrossRef]
- Koelemeij, J.C.; Dun, H.; Diouf, C.E.; Dierikx, E.F.; Janssen, G.J.; Tiberius, C.C. A hybrid optical–wireless network for decimetre-level terrestrial positioning. Nature 2022, 611, 473–478. [Google Scholar] [CrossRef]
- Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.O.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H.V. 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities. Proc. IEEE 2022, 110, 712–734. [Google Scholar] [CrossRef]
- Cohen, S. Ingénierie du Trafic Routier. Eléments de théorie du Trafic et Applications; Institut Francais des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTTAR): Grenoble, France, 1990. [Google Scholar]
- Smith, J.; Blewitt, R.; Green, J.; Ioannidis, I.; Vorotović, V.; Binning, J.; Carrignon, D.; Cottman, N.; Hooper, D.; Nökel, K. Traffic modelling guidelines. Traffic Manag. Netw. Perform. Best Pract. Version 2010, 3, 66–67. [Google Scholar]
- Day, C.M.; Bullock, D.M.; Li, H.; Remias, S.M.; Hainen, A.M.; Freije, R.S.; Stevens, A.L.; Sturdevant, J.R.; Brennan, T.M. Performance Measures for Traffic Signal Systems: An Outcome-Oriented Approach; Technical Report; Purdue University: West Lafayette, Indiana, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Knuth, D.E. Seminumerical algorithms. Art Comput. Program. 1997, 2. [Google Scholar]
- Chen, X.; Li, L.; Zhang, Y. A Markov model for headway/spacing distribution of road traffic. IEEE Trans. Intell. Transp. Syst. 2010, 11, 773–785. [Google Scholar] [CrossRef]
- Jing, H.; Gao, Y.; Shahbeigi, S.; Dianati, M. Integrity Monitoring of GNSS/INS Based Positioning Systems for Autonomous Vehicles: State-of-the-Art and Open Challenges. IIEEE Trans. Intell. Transp. Syst. 2022, 23, 14166–14187. [Google Scholar] [CrossRef]
- Campbell, S.; O’Mahony, N.; Krpalcova, L.; Riordan, D.; Walsh, J.; Murphy, A.; Ryan, C. Sensor technology in autonomous vehicles: A review. In Proceedings of the 2018 29th Irish Signals and Systems Conference (ISSC), Belfast, UK, 21–22 June 2018; pp. 1–4. [Google Scholar]
- Chen, X.; Wang, Z.; Hua, Q.; Shang, W.L.; Luo, Q.; Yu, K. AI-Empowered Speed Extraction via Port-Like Videos for Vehicular Trajectory Analysis. IEEE Trans. Intell. Transp. Syst. 2022, in press. [Google Scholar] [CrossRef]
- Li, T.; Xie, S.; Zeng, Z.; Dong, M.; Liu, A. ATPS: An AI Based Trust-Aware and Privacy-Preserving System for Vehicle Managements in Sustainable VANETs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19837–19851. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, W.; Liu, A.; Wang, T.; Li, A. A privacy-protected intelligent crowdsourcing application of IoT based on the reinforcement learning. Future Gener. Comput. Syst. 2022, 127, 56–69. [Google Scholar] [CrossRef]
- Alnasser, A.; Sun, H.; Jiang, J. Cyber security challenges and solutions for V2X communications: A survey. Comput. Netw. 2019, 151, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Mualla, Y. Explaining the Behavior of Remote Robots to Humans: An Agent-Based Approach. Ph.D. Thesis, Université Bourgogne Franche-Comté, Dijon, France, 2020. [Google Scholar]
- Tettamanti, T.; Szalai, M.; Vass, S.; Tihanyi, V. Vehicle-in-the-loop test environment for autonomous driving with microscopic traffic simulation. In Proceedings of the 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018; pp. 1–6. [Google Scholar]
- Juozevičiūtė, D.; Grigonis, V. Evaluation of exclusive pedestrian phase safety performance at one-level signalized intersections in Vilnius. Sustainability 2022, 14, 7894. [Google Scholar] [CrossRef]
- Zhang, M.; Brunoud, A.; Lombard, A.; Mualla, Y.; Abbas-Turki, A.; Koukam, A. Cooperative Behaviors of Connected Autonomous Vehicles and Pedestrians to Provide Safe and Efficient Traffic in Industrial Sites. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, SMC 2022, Prague, Czech Republic, 9–12 October 2022; pp. 2802–2807. [Google Scholar] [CrossRef]
- Mualla, Y.; Tchappi, I.; Kampik, T.; Najjar, A.; Calvaresi, D.; Abbas-Turki, A.; Galland, S.; Nicolle, C. The quest of parsimonious XAI: A human-agent architecture for explanation formulation. Artif. Intell. 2022, 302, 103573. [Google Scholar] [CrossRef]
- Zhang, M.; Abbas-Turki, A.; Mualla, Y.; Koukam, A.; Tu, X. Coordination Between Connected Automated Vehicles and Pedestrians to Improve Traffic Safety and Efficiency at Industrial Sites. IEEE Access 2022, 10, 68029–68041. [Google Scholar] [CrossRef]
- Reyes-Muñoz, A.; Guerrero-Ibáñez, J. Vulnerable road users and connected autonomous vehicles interaction: A survey. Sensors 2022, 22, 4614. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, K.; Somanath, S.; Sharlin, E. Communicating awareness and intent in autonomous vehicle-pedestrian interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12. [Google Scholar]
- Russell, S.J. Artificial Intelligence a Modern Approach; Pearson Education, Inc.: London, UK, 2010. [Google Scholar]
- Calvaresi, D.; Marinoni, M.; Sturm, A.; Schumacher, M.; Buttazzo, G. The challenge of real-time multi-agent systems for enabling IoT and CPS. In Proceedings of the International Conference on Web Intelligence, Leipzig, Germany, 23–26 August 2017; pp. 356–364. [Google Scholar]
- Calvaresi, D.; Appoggetti, K.; Lustrissimini, L.; Marinoni, M.; Sernani, P.; Dragoni, A.F.; Schumacher, M. Multi-Agent Systems’ Negotiation Protocols for Cyber-Physical Systems: Results from a Systematic Literature Review. In Proceedings of the ICAART 2018—10th International Conference on Agents and Artificial Intelligence, Funchal, Madeira, Portugal, 16–18 January 2018; pp. 224–235. [Google Scholar]
- Calvaresi, D.; Dicente Cid, Y.; Marinoni, M.; Dragoni, A.F.; Najjar, A.; Schumacher, M. Real-time multi-agent systems: Rationality, formal model, and empirical results. Auton. Agents Multi-Agent Syst. 2021, 35, 1–37. [Google Scholar] [CrossRef]
- Alzetta, F.; Giorgini, P.; Marinoni, M.; Calvaresi, D. RT-BDI: A Real-Time BDI Model. In Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection, Proceedings of the 18th International Conference, PAAMS 2020, L’Aquila, Italy, 7–9 October 2020; Demazeau, Y., Holvoet, T., Corchado, J.M., Costantini, S., Eds.; Springer International Publishing: Cham, Switzerland; pp. 16–29.
- Buttazzo, G.C. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications; Springer Science & Business Media: New York, NY, USA, 2011; Volume 24. [Google Scholar]
- Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A survey and critique of multiagent deep reinforcement learning. Auton. Agents Multi-Agent Syst. 2019, 33, 750–797. [Google Scholar] [CrossRef]
- Brunoud, A.; Lombard, A.; Zhang, M.; Abbas-Turki, A.; Gaud, N.; Koukam, A. Comparison of Deep Reinforcement Learning Methods for Safe and Efficient Autonomous Vehicles at Pedestrian Crossings. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; pp. 2556–2562. [Google Scholar]
Ref. | Test | Veh. | No. of Veh. | AIM | Collision |
---|---|---|---|---|---|
[113] | 8-shaped intersection | Mini-robots | 6 | Stop and Go, FIFS, Dec. | Yes |
[39] | 8-shaped intersection | CAV | 2 | Res., FIFS, Dec. | No |
[42] | 4-way virtual intersection | CAV | 1 | Res., FIFS, Cent. | Yes |
[115] | 4-way intersection | Mini-robots | 4 (1 per lane) | Res., FIFS, Dec and Cent. | Yes |
[8] | 2-way intersection | CV | 4 | Stop and Go, FIFS and DCP, Cent. | No |
[17,43] | 2-way intersection | Mini-robots | 3 | Virt. Plat. and Res., FIFS and DCP, Cent. | No |
[51] | 8-shaped intersection | CAV | 3 | Vitr. Plat., FIFS, Cent. | No |
[117] | 4-way intersection | Mini-robots | 4 (1 per lane) | Res., FIFS, Cent. | Yes |
[118] | 4-way intersection | Mini-robots | Unlimited | Virt. Plat., FIFS, Cent. | No |
[24,30] | 4-way intersection | CAV | 3 (1 per lane) | Res., FIFS, Cent | No |
“Stop” and “Go” | Virtual Platoon | Reservation | Hybridization | |
---|---|---|---|---|
FIFS | – | FIFS_VP | FIFS_RES | – |
FRO | – | FRO_VP | – | – |
DCP | DCP_SG | DCP_VP | DCP_RES | DCP_PSO |
Simulations | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Flow per lane | 0.1 upcs | 0.18 upcs | 0.2 upcs | 0.25 upcs | 0.28 upcs | 0.3 upcs |
Intersection demand | 0.4 upcs | 0.72 upcs | 0.8 upcs | 1 upcs | 1.12 upcs | 1.2 upcs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas-Turki, A.; Mualla, Y.; Gaud, N.; Calvaresi, D.; Du, W.; Lombard, A.; Dridi, M.; Koukam, A. Autonomous Intersection Management: Optimal Trajectories and Efficient Scheduling. Sensors 2023, 23, 1509. https://doi.org/10.3390/s23031509
Abbas-Turki A, Mualla Y, Gaud N, Calvaresi D, Du W, Lombard A, Dridi M, Koukam A. Autonomous Intersection Management: Optimal Trajectories and Efficient Scheduling. Sensors. 2023; 23(3):1509. https://doi.org/10.3390/s23031509
Chicago/Turabian StyleAbbas-Turki, Abdeljalil, Yazan Mualla, Nicolas Gaud, Davide Calvaresi, Wendan Du, Alexandre Lombard, Mahjoub Dridi, and Abder Koukam. 2023. "Autonomous Intersection Management: Optimal Trajectories and Efficient Scheduling" Sensors 23, no. 3: 1509. https://doi.org/10.3390/s23031509
APA StyleAbbas-Turki, A., Mualla, Y., Gaud, N., Calvaresi, D., Du, W., Lombard, A., Dridi, M., & Koukam, A. (2023). Autonomous Intersection Management: Optimal Trajectories and Efficient Scheduling. Sensors, 23(3), 1509. https://doi.org/10.3390/s23031509