A Novel Approach to Clustering Accelerometer Data for Application in Passive Predictions of Changes in Depression Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. The BiAffect iPhone Open Science Study
2.2. Accelerometer Processing
2.3. Clustering
2.4. Modeling
3. Results
3.1. Clustering
3.2. Changes in Phone Orientation over Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frank, E.; Cassano, G.B.; Rucci, P.; Thompson, W.K.; Kraemer, H.C.; Fagiolini, A.; Maggi, L.; Kupfer, D.J.; Shear, M.K.; Houck, P.R.; et al. Predictors and Moderators of Time to Remission of Major Depression with Interpersonal Psychotherapy and SSRI Pharmacotherapy. Psychol. Med. 2011, 41, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Alang, S.; McAlpine, D. Treatment Modalities and Perceived Effectiveness of Treatment among Adults with Depression. Health Serv. Insights 2020, 13, 1178632920918288. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; et al. Bipolar Disorders. Lancet 2020, 396, 1841–1856. [Google Scholar]
- Patel, A. The Cost of Mood Disorders. Psychiatry 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Hidalgo-Mazzei, D.; Young, A.H. Psychiatry Foretold. Aust. N. Z. J. Psychiatry 2019, 53, 365–366. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.; Qassem, M.; Kyriacou, P.A. Wearable, Environmental, and Smartphone-Based Passive Sensing for Mental Health Monitoring. Front. Digit. Health 2021, 3, 662811. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Mazzei, D.; Llach, C.; Vieta, E. MHealth in Affective Disorders: Hype or Hope? A Focused Narrative Review. Int. Clin. Psychopharmacol. 2020, 35, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Canzian, L.; Musolesi, M. Trajectories of Depression: Unobtrusive Monitoring of Depressive States by Means of Smartphone Mobility Traces Analysis. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1293–1304. [Google Scholar]
- Saeb, S.; Lattie, E.G.; Schueller, S.M.; Kording, K.P.; Mohr, D.C. The Relationship between Mobile Phone Location Sensor Data and Depressive Symptom Severity. PeerJ 2016, 4, e2537. [Google Scholar] [CrossRef] [PubMed]
- Beiwinkel, T.; Kindermann, S.; Maier, A.; Kerl, C.; Moock, J.; Barbian, G.; Rössler, W. Using Smartphones to Monitor Bipolar Disorder Symptoms: A Pilot Study. JMIR Ment. Health 2016, 3, e4560. [Google Scholar] [CrossRef]
- Cho, C.-H.; Lee, T.; Kim, M.-G.; In, H.P.; Kim, L.; Lee, H.-J. Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study. J. Med. Internet Res. 2019, 21, e11029. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.C.; Ross, M.K.; Baek, E.; Kim, D.; Leow, A.D. Predicting Clinically Relevant Changes in Bipolar Disorder Outside the Clinic Walls Based on Pervasive Technology Interactions via Smartphone Typing Dynamics. Pervasive Mob. Comput. 2022, 83, 101598. [Google Scholar] [CrossRef]
- Insel, T.R. Digital Phenotyping: A Global Tool for Psychiatry. World Psychiatry 2018, 17, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Fiorani, M.; Volpe, U. Digital Phenotyping in Bipolar Disorder: Which Integration with Clinical Endophenotypes and Biomarkers? Int. J. Mol. Sci. 2020, 21, 7684. [Google Scholar] [CrossRef] [PubMed]
- Victory, A.; Letkiewicz, A.; Cochran, A.L. Digital Solutions for Shaping Mood and Behavior among Individuals with Mood Disorders. Curr. Opin. Syst. Biol. 2020, 21, 25–31. [Google Scholar] [CrossRef]
- Reinertsen, E.; Clifford, G.D. A Review of Physiological and Behavioral Monitoring with Digital Sensors for Neuropsychiatric Illnesses. Physiol. Meas. 2018, 39, 05TR01. [Google Scholar] [CrossRef]
- Vancampfort, D.; Firth, J.; Schuch, F.B.; Rosenbaum, S.; Mugisha, J.; Hallgren, M.; Probst, M.; Ward, P.B.; Gaughran, F.; De Hert, M.; et al. Sedentary Behavior and Physical Activity Levels in People with Schizophrenia, Bipolar Disorder and Major Depressive Disorder: A Global Systematic Review and Meta-Analysis. World Psychiatry 2017, 16, 308–315. [Google Scholar] [CrossRef]
- Highland, D.; Zhou, G. A Review of Detection Techniques for Depression and Bipolar Disorder. Smart Health 2022, 24, 100282. [Google Scholar] [CrossRef]
- Bardram, J.E.; Frost, M.; Szántó, K.; Faurholt-Jepsen, M.; Vinberg, M.; Kessing, L.V. Designing Mobile Health Technology for Bipolar Disorder: A Field Trial of the Monarca System. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 2627–2636. [Google Scholar]
- Cao, B.; Zheng, L.; Zhang, C.; Yu, P.S.; Piscitello, A.; Zulueta, J.; Ajilore, O.; Ryan, K.; Leow, A.D. DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; Association for Computing Machinery: Halifax, NS, Canada, 2017; pp. 747–755. [Google Scholar]
- Zulueta, J.; Piscitello, A.; Rasic, M.; Easter, R.; Babu, P.; Langenecker, S.A.; McInnis, M.; Ajilore, O.; Nelson, P.C.; Ryan, K.; et al. Predicting Mood Disturbance Severity with Mobile Phone Keystroke Metadata: A BiAffect Digital Phenotyping Study. J. Med. Internet Res. 2018, 20. [Google Scholar] [CrossRef]
- Huang, H.; Cao, B.; Yu, P.S.; Wang, C.; Leow, A.D. DpMood: Exploiting Local and Periodic Typing Dynamics for Personalized Mood Prediction. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 157–166. [Google Scholar]
- Spathis, D.; Servia-Rodriguez, S.; Farrahi, K.; Mascolo, C.; Rentfrow, J. Passive Mobile Sensing and Psychological Traits for Large Scale Mood Prediction. In Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare, Trento, Italy, 20–23 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 272–281. [Google Scholar]
- Mastoras, R.-E.; Iakovakis, D.; Hadjidimitriou, S.; Charisis, V.; Kassie, S.; Alsaadi, T.; Khandoker, A.; Hadjileontiadis, L.J. Touchscreen Typing Pattern Analysis for Remote Detection of the Depressive Tendency. Sci. Rep. 2019, 9, 13414. [Google Scholar] [CrossRef] [PubMed]
- Peeters, F.; Berkhof, J.; Delespaul, P.; Rottenberg, J.; Nicolson, N.A. Diurnal Mood Variation in Major Depressive Disorder. Emotion 2006, 6, 383–391. [Google Scholar] [CrossRef]
- Bechtel, W. Circadian Rhythms and Mood Disorders: Are the Phenomena and Mechanisms Causally Related? Front. Psychiatry 2015, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA, 2 August 1996; AAAI Press: Portland, OR, USA, 1996; pp. 226–231. [Google Scholar]
- Stange, J.P.; Zulueta, J.; Langenecker, S.A.; Ryan, K.A.; Piscitello, A.; Duffecy, J.; McInnis, M.G.; Nelson, P.; Ajilore, O.; Leow, A. Let Your Fingers Do the Talking: Passive Typing Instability Predicts Future Mood Outcomes. Bipolar Disord. 2018, 20, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Vesel, C.; Rashidisabet, H.; Zulueta, J.; Stange, J.P.; Duffecy, J.; Hussain, F.; Piscitello, A.; Bark, J.; Langenecker, S.A.; Young, S.; et al. Effects of Mood and Aging on Keystroke Dynamics Metadata and Their Diurnal Patterns in a Large Open-Science Sample: A BiAffect IOS Study. J. Am. Med. Inform. Assoc. 2020, 27, 1007–1018. [Google Scholar] [CrossRef]
- Zulueta, J.; Demos, A.P.; Vesel, C.; Ross, M.; Piscitello, A.; Hussain, F.; Langenecker, S.A.; McInnis, M.; Nelson, P.; Ryan, K.; et al. The Effects of Bipolar Disorder Risk on a Mobile Phone Keystroke Dynamics Based Biomarker of Brain Age. Front. Psychiatry 2021, 12, 2284. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Stange, J.P.; Langenecker, S.A.; McInnis, M.G.; Zulueta, J.; Piscitello, A.; Ross, M.K.; Demos, A.P.; Vesel, C.; Rashidisabet, H.; et al. Passive Sensing of Affective and Cognitive Functioning in Mood Disorders by Analyzing Keystroke Kinematics and Speech Dynamics. In Digital Phenotyping and Mobile Sensing: New Developments in Psychoinformatics; Montag, C., Baumeister, H., Eds.; Studies in Neuroscience, Psychology and Behavioral Economics; Springer International Publishing: Cham, Switzerland, 2023; pp. 229–258. ISBN 978-3-030-98546-2. [Google Scholar]
- Bennett, C.C.; Ross, M.K.; Baek, E.; Kim, D.; Leow, A.D. Smartphone Accelerometer Data as a Proxy for Clinical Data in Modeling of Bipolar Disorder Symptom Trajectory. NPJ Digit. Med. 2022, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Löwe, B.; Unützer, J.; Callahan, C.M.; Perkins, A.J.; Kroenke, K. Monitoring Depression Treatment Outcomes with the Patient Health Questionnaire-9. Med. Care 2004, 42, 1194–1201. [Google Scholar] [PubMed]
- Handley, W. Spherical_kde: Spherical Kernel Density Estimation; 2020. Available online: https://github.com/williamjameshandley/spherical_kde. (accessed on 9 December 2022).
- Deserno, M. How to Generate Equidistributed Points on the Surface of a Sphere. Polym. Ed 2004, 99, 2. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Laska, J. Clustering on the Unit Hypersphere in Scikit-Learn; 2018. Available online: https://github.com/jasonlaska/spherecluster. (accessed on 9 December 2022).
- Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function Using NetworkX. In Proceedings of the 7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; Varoquaux, G., Vaught, T., Millman, J., Eds.; pp. 11–15. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 1-4414-1269-7. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar]
- Reback, J.; Jbrockmendel; McKinney, W.; den Bossche, J.V.; Augspurger, T.; Cloud, P.; Hawkins, S.; Gfyoung; Roeschke, M.; Sinhrks; et al. Pandas-Dev/Pandas: Pandas 1.3.3. Zenodo, 2021. Available online: https://zenodo.org/record/5501881#.Y9oAFHZByUk (accessed on 28 January 2023).
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L. The PHQ-9: A New Depression Diagnostic and Severity Measure. Psychiatr. Ann. 2002, 32, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A.; Benítez, J.M.; Herrera, F. A Review of Microarray Datasets and Applied Feature Selection Methods. Inf. Sci. 2014, 282, 111–135. [Google Scholar] [CrossRef]
- de Jonge, P.J.; Wardenaar, K.J.; Lim, C.C.W.; Aguilar-Gaxiola, S.; Alonso, J.; Andrade, L.H.; Bunting, B.; Chatterji, S.; Ciutan, M.; Gureje, O.; et al. The Cross-National Structure of Mental Disorders: Results from the World Mental Health Surveys. Psychol. Med. 2018, 48, 2073–2084. [Google Scholar] [CrossRef]
- Benca, R.M.; Okawa, M.; Uchiyama, M.; Ozaki, S.; Nakajima, T.; Shibui, K.; Obermeyer, W.H. Sleep and Mood Disorders. Sleep Med. Rev. 1997, 1, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.J.; Benca, R.M. Sleep in Mood Disorders. Sleep Med. Clin. 2008, 3, 231–249. [Google Scholar] [CrossRef]
- Schuch, F.; Vancampfort, D.; Firth, J.; Rosenbaum, S.; Ward, P.; Reichert, T.; Bagatini, N.C.; Bgeginski, R.; Stubbs, B. Physical Activity and Sedentary Behavior in People with Major Depressive Disorder: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2017, 210, 139–150. [Google Scholar] [CrossRef]
- Scott, J. Clinical Parameters of Circadian Rhythms in Affective Disorders. Eur. Neuropsychopharmacol. 2011, 21, S671–S675. [Google Scholar] [CrossRef]
- Smit, A.C.; Snippe, E. Real-Time Monitoring of Increases in Restlessness to Assess Idiographic Risk of Recurrence of Depressive Symptoms. Psychol. Med. 2022, 1–10. [Google Scholar]
- Ben-Zeev, D.; Young, M.A.; Madsen, J.W. Retrospective Recall of Affect in Clinically Depressed Individuals and Controls. Cogn. Emot. 2009, 23, 1021–1040. [Google Scholar] [CrossRef]
- Hidalgo-Mazzei, D.; Young, A.H.; Vieta, E.; Colom, F. Behavioural Biomarkers and Mobile Mental Health: A New Paradigm. Int. J. Bipolar Disord. 2018, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Maher, N.A.; Senders, J.T.; Hulsbergen, A.F.C.; Lamba, N.; Parker, M.; Onnela, J.-P.; Bredenoord, A.L.; Smith, T.R.; Broekman, M.L.D. Passive Data Collection and Use in Healthcare: A Systematic Review of Ethical Issues. Int. J. Med. Inform. 2019, 129, 242–247. [Google Scholar] [CrossRef] [PubMed]
Feature Name | Feature Description |
---|---|
n_clusters | Number of distinct phone typing orientations per week |
total_distance_between_clusters | Sum of haversine distances traveled between session cluster labels per week |
avg_n_clusters_perSession | Average number of cluster labels of x/y/z readings within each session per week |
avg_n_transitions_perSession | Average number of changes between consecutive cluster labels of x/y/z readings within each session per week |
n_cluster_transitions | Number of changes between consecutive session cluster labels per week |
median_X, median_Y, median_Z | Median x/y/z reading of session’s cluster center per week |
sum_X_motion, sum_Y_motion, sum_Z_motion | Sum of differences between consecutive cluster center x/y/z readings of session cluster labels per week |
X_motion_sd, Y_motion_sd, Z_motion_sd | Standard deviation of differences between consecutive cluster center x/y/z readings of session cluster labels per week |
arc_sum | Three-dimensional rotational motion per week (calculated based on session cluster center x/y/z accelerometer readings) |
Feature Ranking |
---|
median_Y |
median_X |
Age |
n_clusters |
median_Z |
BD |
n_cluster_transitions |
sum_Z_motion |
BD_binary |
MDQdiag |
phoneSize |
Gender |
Anxiety |
medianPressDur |
PTSD |
sum_Y_motion |
sum_X_motion |
Depression |
OCD |
percent_upright_night |
medianDistCenter |
arc_sum |
avg_n_transitions_perSession |
ADHD |
count_X_horizontal |
n_XYZ |
avg_n_clusters_perSession |
X_motion_sd |
NoneOfTheseDiag |
total_distance_between_clusters |
distToCenterPrevRatioAA |
autocorrectRate_wkSD |
medianIKD |
Avg90PercentileAA |
autocorrectRate |
AvgVarAB |
SubstanceAddictionDisorder |
backspaceRate |
AvgVarAA |
Z_motion_sd |
medIKD_wkSD |
Avg_nBackspace |
percent_upright_afternoon |
percent_upright_morning |
bkspRate_wkSD |
Avg_nAutocorrect |
AvgVarBB |
percent_upright |
SeasonalAffectiveDisorder |
nKeypresses |
Y_motion_sd |
percent_upright_evening |
AvgMedAA |
Avg_medPressDuration |
AvgMAD_AA |
Diag_PreferNotAnswer |
AvgMedAB |
Avg_nAlphanum |
Schizophrenia |
AvgMedBB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ross, M.K.; Tulabandhula, T.; Bennett, C.C.; Baek, E.; Kim, D.; Hussain, F.; Demos, A.P.; Ning, E.; Langenecker, S.A.; Ajilore, O.; et al. A Novel Approach to Clustering Accelerometer Data for Application in Passive Predictions of Changes in Depression Severity. Sensors 2023, 23, 1585. https://doi.org/10.3390/s23031585
Ross MK, Tulabandhula T, Bennett CC, Baek E, Kim D, Hussain F, Demos AP, Ning E, Langenecker SA, Ajilore O, et al. A Novel Approach to Clustering Accelerometer Data for Application in Passive Predictions of Changes in Depression Severity. Sensors. 2023; 23(3):1585. https://doi.org/10.3390/s23031585
Chicago/Turabian StyleRoss, Mindy K., Theja Tulabandhula, Casey C. Bennett, EuGene Baek, Dohyeon Kim, Faraz Hussain, Alexander P. Demos, Emma Ning, Scott A. Langenecker, Olusola Ajilore, and et al. 2023. "A Novel Approach to Clustering Accelerometer Data for Application in Passive Predictions of Changes in Depression Severity" Sensors 23, no. 3: 1585. https://doi.org/10.3390/s23031585