Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Data
2.1.1. Remote Sensing Data (MODIS, AMSR-E, AMSR-2)
2.1.2. Long-Term Series of Daily Snow Depth Dataset in China (1979–2021)
2.1.3. ERA5-Land
2.1.4. Lake Temperature Observation
2.2. Methods
2.2.1. Extraction of Lake Boundaries
2.2.2. Extraction of Lake Ice Phenology Events
2.2.3. Statistical Analysis
3. Results
3.1. Verification and Assessment of Lake Ice Phenology Datasets
3.2. Comprehensive Integrated Analysis of Lake Ice Phenology Datasets
3.3. Analysis of Influencing Factors of Lake Ice Phenology Parameters
3.4. Trend Analysis of the Lake Ice Phenology Extracted by AMSR-E/2 from 2002 to 2021
4. Discussion
4.1. Effects of Snow Cover on Lake Ice Phenology and Trend Change
4.2. Effect of Pixel Position on Lake Ice Phenology Parameters
4.3. Uncertainty Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latifovic, R.; Pouliot, D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens. Environ. 2007, 106, 492–507. [Google Scholar] [CrossRef]
- Fujisaki-Manome, A.; Fitzpatrick, L.E.; Gronewold, A.D.; Anderson, E.J.; Lofgren, B.M.; Spence, C.; Chen, J.; Shao, C.; Wright, D.M.; Xiao, C. Turbulent Heat Fluxes during an Extreme Lake-Effect Snow Event. J. Hydrometeorol. 2017, 18, 3145–3163. [Google Scholar] [CrossRef]
- Baijnath-Rodino, J.A.; Duguay, C.R.; LeDrew, E. Climatological trends of snowfall over the Laurentian Great Lakes Basin. Int. J. Clim. 2018, 38, 3942–3962. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; James, I.C.; Huntington, T.G. Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000. Int. J. Clim. 2002, 22, 1819–1827. [Google Scholar] [CrossRef]
- Korhonen, J. Long-term changes in lake ice cover in Finland. Hydrol. Res. 2006, 37, 347–363. [Google Scholar] [CrossRef]
- Robertson, D.; Ragotzkie, R.A.; Magnuson, J.J. Lake ice records used to detect historical and future climatic changes. Clim. Chang. 1992, 21, 407–427. [Google Scholar] [CrossRef]
- Livingstone, D.M. Break-up Dates of Alpine Lakes As Proxy Data for Local and Regional Mean Surface Air Temperatures. Clim. Chang. 1997, 37, 407–439. [Google Scholar] [CrossRef]
- Surdu, C.M.; Duguay, C.R.; Pour, H.K.; Brown, L.C. Ice Freeze-up and Break-up Detection of Shallow Lakes in Northern Alaska with Spaceborne SAR. Remote Sens. 2015, 7, 6133–6159. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Kimball, J.S.; Duguay, C.; Kim, Y.; Watts, J.D. Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere 2017, 11, 47–63. [Google Scholar] [CrossRef]
- Murfitt, J.; Duguay, C.R. 50 years of lake ice research from active microwave remote sensing: Progress and prospects. Remote Sens. Environ. 2021, 264, 112616. [Google Scholar] [CrossRef]
- Arp, C.D.; Jones, B.M.; Grosse, G. Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A. Limnol. Oceanogr. 2013, 58, 2013–2028. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Román, M.O. MODIS Snow Products Collection 6 User Guide; National Snow Ice Data Center: Boulder, CO, USA, 2015; p. 66. [Google Scholar]
- Šmejkalová, T.; Edwards, M.E.; Dash, J. Arctic lakes show strong decadal trend in earlier spring ice-out. Sci. Rep. 2016, 6, 38449. [Google Scholar] [CrossRef] [PubMed]
- Wynne, R.H.; Magnuson, J.J.; Clayton, M.K.; Lillesand, T.M.; Rodman, D.C. Determinants of temporal coherence in the satellite-derived 1987–1994 ice breakup dates of lakes on the Laurentian Shield. Limnol. Oceanogr. 1996, 41, 832–838. [Google Scholar] [CrossRef]
- Weber, H.; Riffler, M.; Nõges, T.; Wunderle, S. Lake ice phenology from AVHRR data for European lakes: An automated two-step extraction method. Remote Sens. Environ. 2016, 174, 329–340. [Google Scholar] [CrossRef]
- Kropáček, J.; Maussion, F.; Chen, F.; Hoerz, S.; Hochschild, V. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere 2013, 7, 287–301. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.-Q.; Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 2017, 607–608, 120–131. [Google Scholar] [CrossRef]
- Howell, S.E.; Brown, L.C.; Kang, K.-K.; Duguay, C.R. Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000–2006. Remote Sens. Environ. 2009, 113, 816–834. [Google Scholar] [CrossRef]
- Murfitt, J.; Duguay, C.R. Assessing the Performance of Methods for Monitoring Ice Phenology of the World’s Largest High Arctic Lake Using High-Density Time Series Analysis of Sentinel-1 Data. Remote Sens. 2020, 12, 382. [Google Scholar] [CrossRef] [Green Version]
- Marghany, M. Introductory Chapter: Automatic Detection of Ice Covers in Airborne Radar Data Using Genetic Algorithm. In Recent Remote Sensing Sensor Applications-Satellites and Unmanned Aerial Vehicles (UAVs); IntechOpen: London, UK, 2022. [Google Scholar]
- Tom, M.; Aguilar, R.; Imhof, P.; Leinss, S.; Baltsavias, E.; Schindler, K. Lake ice detection from sentinel-1 sar with deep learning. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 409–416. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R. Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data. Chin. Sci. Bull. 2009, 54, 2294–2299. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, X.; Ruan, Y.; Xie, P. Passive microwave remote sensing of lake freeze-thawing over Qinghai-Tibet Plateau. J. Lake Sci. 2018, 30, 1438–1449. [Google Scholar]
- Ke, C.-Q.; Tao, A.-Q.; Jin, X. Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager: 1978 to 2013. J. Appl. Remote Sens. 2013, 7, 073477. [Google Scholar] [CrossRef]
- Tao, A. Research on the Variation of Namco Lake ice by Passive Microwave Remote Sensing. Master’s Thesis, Nanjing University, Nanjing, China, 2014. [Google Scholar]
- Kouraev, A.V.; Semovski, S.V.; Shimaraev, M.N.; Mognard, N.M.; Légresy, B.; Remy, F. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sens. Environ. 2007, 108, 240–253. [Google Scholar] [CrossRef]
- Wei, Q.; Ye, Q. Review of lake ice monitoring by remote sensing. Prog. Geogr. 2010, 29, 803–810. [Google Scholar]
- Wang, Z.; Wu, Y.; Chang, J.; Zhang, X.; Peng, D. Temporal and spatial variation of lake ice phenology and its influencing factors in the Tibetan Plateau. J. Beijing Univ. Technol. 2017, 43, 701–709. [Google Scholar]
- Qiu, Y. The Lake Ice Phenology Dataset of the Northern Hemisphere (1978–2018); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Yao, X.; Li, L.; Zhao, J.; Sun, M.; Li, J.; Gong, P.; An, L. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011. J. Geogr. Sci. 2015, 26, 70–82. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Semovski, S.V.; Shimaraev, M.N.; Mognard, N.M.; Legrésy, B.; Rémy, F. The ice regime of Lake Baikal from historical and satellite data: Relationship to air temperature, dynamical, and other factors. Limnol. Oceanogr. 2007, 52, 1268–1286. [Google Scholar] [CrossRef]
- Karetnikov, S.G.; Naumenko, M.A. Recent trends in Lake Ladoga ice cover. Hydrobiologia 2008, 599, 41–48. [Google Scholar] [CrossRef]
- Kirillin, G.; Leppäranta, M.; Terzhevik, A.; Granin, N.; Bernhardt, J.; Engelhardt, C.; Efremova, T.; Golosov, S.; Palshin, N.; Sherstyankin, P.; et al. Physics of seasonally ice-covered lakes: A review. Aquat. Sci. 2012, 74, 659–682. [Google Scholar] [CrossRef]
- Jensen, O.P.; Benson, B.J.; Magnuson, J.J.; Card, V.M.; Futter, M.N.; Soranno, P.A.; Stewart, K.M. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol. Oceanogr. 2007, 52, 2013–2026. [Google Scholar] [CrossRef]
- Efremova, T.V.; Pal’Shin, N.I. Ice phenomena terms on the water bodies of Northwestern Russia. Russ. Meteorol. Hydrol. 2011, 36, 559–565. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Zhang, K.; Zhu, F. Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull. 2014, 59, 3010–3021. [Google Scholar] [CrossRef]
- Ye, D.-Z.; Wu, G.-X. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol. Atmos. Phys. 1998, 67, 181–198. [Google Scholar] [CrossRef]
- Su, D.; Hu, X.; Wen, L.; Lyu, S.; Gao, X.; Zhao, L.; Li, Z.; Du, J.; Kirillin, G. Numerical study on the response of the largest lake in China to climate change. Hydrol. Earth Syst. Sci. 2019, 23, 2093–2109. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, L. Interannual variability of atmospheric heat source/sink over the Qinghai—Xizang (Tibetan) Plateau and its relation to circulation. Adv. Atmos. Sci. 2001, 18, 106–116. [Google Scholar]
- Hsu, H.-H.; Liu, X. Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett. 2003, 30, 2066. [Google Scholar] [CrossRef]
- Flohn, H. Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteorol. Soc. Jpn. 1957, 75, 180–186. [Google Scholar] [CrossRef]
- Duan, A.M.; Wu, G.X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim. Dyn. 2005, 24, 793–807. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Qiu, Y.; Guo, H.; Ruan, Y.; Fu, X.; Shi, L.; Tian, B. A dataset of microwave brightness temperature and freeze-thaw process for medium-to-large lakes over the High Asia Region (2002–2016). China Sci. Data 2017, 2, 30–41. [Google Scholar]
- Qiu, Y. Dataset of Microwave Brightness Temperature and the Freeze-Thaw Process for Medium-to-Large Lakes in the High Asia Region (2002–2016). A Big Earth Data Platform for Three Poles. 2018. Available online: https://poles.tpdc.ac.cn/en/data/67b953f5-88b5-444e-b02d-78e46a19e5f5/?q= (accessed on 8 January 2022).
- Guo, L.; Wu, Y.; Zheng, H.; Zhang, B.; Li, J.; Zhang, F.; Shen, Q. Uncertainty and Variation of Remotely Sensed Lake Ice Phenology across the Tibetan Plateau. Remote Sens. 2018, 10, 1534. [Google Scholar] [CrossRef]
- Qiu, Y.; Xie, P.; Leppäranta, M.; Wang, X.; Lemmetyinen, J.; Lin, H.; Shi, L. MODIS-based Daily Lake Ice Extent and Coverage dataset for Tibetan Plateau. Big Earth Data 2019, 3, 170–185. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.; Li, X.; Zhang, G.; Duan, Z.; Lee, H. Variations of Lake Ice Phenology on the Tibetan Plateau from 2001 to 2017 Based on MODIS Data. J. Geophys. Res. Atmos. 2019, 124, 825–843. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Zheng, H.; Zhang, B.; Chi, H.; Fan, L. Lake Ice Phenology Dataset across the Tibetan Plateau during 1978–2016; National Tibetan Plateau Data Center: Beijing, China, 2022. [Google Scholar]
- Zhang, X.; Wang, K.; Kirillin, G. An Automatic Method to Detect Lake Ice Phenology Using MODIS Daily Temperature Imagery. Remote Sens. 2021, 13, 2711. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 1–8. [Google Scholar]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Liu, C.; Ge, C. Characteristics and applications of remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Earth Observing System (EOS). Remote Sens. Inf. 2000, 3, 46–49. (In Chinese) [Google Scholar]
- Che, T.; Dai, L. Long-Term Series of Daily Snow Depth Dataset in China (1979–2020); A Big Earth Data Platform for Three Poles: Beijing, China, 2015. [Google Scholar]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2017, 49, 145–154. [Google Scholar] [CrossRef]
- Dai, L.; Che, T.; Ding, Y. Inter-Calibrating SMMR, SSM/I and SSMI/S Data to Improve the Consistency of Snow-Depth Products in China. Remote Sens. 2015, 7, 7212–7230. [Google Scholar] [CrossRef]
- Dai, L.; Che, T.; Ding, Y.; Hao, X. Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing. Cryosphere 2017, 11, 1933–1948. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Ju, J.; Daut, G.; Wang, Y.; Ma, Q.; Zhu, L.; Haberzettl, T.; Baade, J.; Mäusbacher, R. Spatial and temporal variations in water temperature in a high-altitude deep dimictic mountain lake (Nam Co), central Tibetan Plateau. J. Great Lakes Res. 2019, 45, 212–223. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.; Ju, J.; Daut, G.; Ma, Q.; Zhu, L.; Haberzettl, T.; Baade, J.; Mäusbacher, R.; Hamilton, A.; et al. Seasonal stratification of a deep, high-altitude, dimictic lake: Nam Co, Tibetan Plateau. J. Hydrol. 2020, 584, 124668. [Google Scholar] [CrossRef]
- Wang, J. Water Temperature Observation Data at Nam Co Lake in Tibet (2011–2014); National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar]
- Lei, Y.; Yao, T.; Yang, K.; Ma, Y.; Bird, B.W. Lazhu Contrasting hydrological and thermal intensities determine seasonal lake-level variations—A case study at Paiku Co on the southern Tibetan Plateau. Hydrol. Earth Syst. Sci. 2021, 25, 3163–3177. [Google Scholar] [CrossRef]
- Wang, M.; Hou, J.; Lei, Y. Classification of Tibetan lakes based on variations in seasonal lake water temperature. Chin. Sci. Bull. 2014, 59, 4847–4855. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Jeffries, M.O.; Morris, K. Some aspects of ice phenology on ponds in central Alaska, USA. Ann. Glaciol. 2007, 46, 397–403. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin & company Limited: London, UK, 1978. [Google Scholar]
- Williams, G.P. Correlating Freeze-Up and Break-Up with Weather Conditions. Can. Geotech. J. 1965, 2, 313–326. [Google Scholar] [CrossRef]
- Adams, W. A classification of freshwater ice. Musk Ox. 1976, 18, 99–102. [Google Scholar]
- Ashton, G.D. River and Lake Ice Engineering; Water Resources Publication: Littleton, CO, USA, 1986. [Google Scholar]
- Liston, G.E.; Hall, D.K. An energy-balance model of lake-ice evolution. J. Glaciol. 1995, 41, 373–382. [Google Scholar] [CrossRef]
- Lazhu; Yang, K.; Hou, J.; Wang, J.; Lei, Y.; Zhu, L.; Chen, Y.; Wang, M.; He, X. A new finding on the prevalence of rapid water warming during lake ice melting on the Tibetan Plateau. Sci. Bull. 2021, 66, 2358–2361. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, H.; Wang, H.; Qiu, Y. The Impact of the NAO on the Delayed Break-Up Date of Lake Ice over the Southern Tibetan Plateau. J. Clim. 2018, 31, 9073–9086. [Google Scholar] [CrossRef]
- Scott, K.A.; Xu, L.; Pour, H.K. Retrieval of ice/water observations from synthetic aperture radar imagery for use in lake ice data assimilation. J. Great Lakes Res. 2020, 46, 1521–1532. [Google Scholar] [CrossRef]
FID | Name | Longitude (°) | Latitude (°) | Altitude (m) | Area (km2) | Averaged Ice Phenology Events | ||||
---|---|---|---|---|---|---|---|---|---|---|
FUS | FUE | BUS | BUE | ID | ||||||
1 | Karakul Lake | 73.4 | 39.1 | 3919 | 390.30 | 26 November | 14 December | 11 May | 27 May | 182 |
2 | Ayakkum Lake | 89.5 | 37.6 | 3879 | 727.96 | 11 December | 26 December | 5 March | 20 March | 100 |
3 | Har Lake | 97.6 | 38.3 | 4075 | 583.95 | 14 November | 23 November | 8 May | 4 June | 202 |
4 | Gozha Co | 81.1 | 35.1 | 5077 | 246.20 | 18 November | 10 December | 18 June | 5 July | 229 |
5 | Bangong Co | 79.8 | 33.6 | 4244 | 628.59 | 16 December | 30 December | 28 March | 13 April | 118 |
6 | Lumajiangdong Co | 81.6 | 34.1 | 4816 | 348.09 | 24 November | 6 December | 13 May | 30 May | 187 |
7 | Aqqikkol Lake | 88.4 | 37.1 | 4257 | 395.96 | 14 November | 24 November | 23 April | 9 May | 176 |
8 | Jingyu Lake | 89.4 | 36.4 | 4718 | 255.83 | 5 November | 18 November | 22 May | 8 June | 215 |
9 | Dogaicoring Qangco | 89.2 | 35.4 | 4792 | 292.08 | 8 November | 17 November | 30 April | 9 May | 183 |
10 | Dogai Coring | 89 | 34.6 | 4822 | 420.43 | 26 November | 19 December | 19 March | 11 April | 136 |
11 | Kusai Lake | 92.9 | 35.7 | 4484 | 248.85 | 13 November | 28 November | 6 May | 18 May | 187 |
12 | Hoh Xil Lake | 91.2 | 35.6 | 4886 | 307.52 | 27 October | 12 November | 6 June | 22 June | 239 |
13 | Zhuonai Lake | 91.9 | 35.6 | 4753 | 248.85 | 4 November | 22 November | 24 May | 6 June | 215 |
14 | Ulan Ul Lake | 90.4 | 34.9 | 4861 | 545.76 | 27 October | 20 November | 9 May | 11 June | 227 |
15 | Lexiewudan Co | 90.2 | 35.8 | 4870 | 237.50 | 17 November | 1 December | 28 April | 14 May | 178 |
16 | Xijir Ulan Lake | 90.3 | 35.3 | 4773 | 367.71 | 25 November | 17 December | 13 March | 24 April | 150 |
17 | Migriggyangzham Co | 90.3 | 33.5 | 4936 | 471.12 | 19 November | 17 December | 15 May | 28 May | 190 |
18 | Donggei Cuona Lake | 98.6 | 35.3 | 4086 | 228.55 | 4 December | 19 December | 29 April | 12 May | 159 |
19 | Gyaring Lake | 97.3 | 35 | 4291 | 486.62 | 7 November | 26 November | 31 March | 22 April | 166 |
20 | Ngoring Lake | 97.7 | 34.9 | 4269 | 607.80 | 21 November | 10 December | 22 April | 6 May | 166 |
21 | Qinghai Lake | 100.1 | 37 | 3191 | 4204.45 | 14 December | 31 December | 23 March | 6 April | 113 |
22 | Langa Co | 81.2 | 30.7 | 4565 | 253.67 | 20 December | 11 January | 19 April | 9 May | 140 |
23 | Mapam Yumco | 81.4 | 30.7 | 4581 | 408.36 | 11 January | 24 January | 17 April | 30 April | 110 |
24 | Ngangla Ringco | 83 | 31.6 | 4710 | 479.94 | 29 November | 21 December | 17 April | 4 May | 155 |
25 | Taro Co | 84.1 | 31.2 | 4565 | 478.91 | 16 January | 22 January | 19 February | 18 April | 92 |
26 | Zhari Namco | 85.5 | 31 | 4607 | 966.95 | 21 December | 3 January | 30 March | 13 April | 114 |
27 | Paiku Co | 85.6 | 28.9 | 4579 | 269.77 | 19 January | 7 February | 2 April | 18 April | 89 |
28 | Dagze Co | 87.5 | 31.9 | 4464 | 270.62 | 12 December | 20 December | 3 April | 17 April | 126 |
29 | Urru Co | 88 | 31.8 | 4554 | 342.91 | 28 December | 12 January | 20 March | 22 April | 115 |
30 | Cuoe Lake | 88.7 | 31.7 | 4565 | 255.53 | 25 November | 18 December | 13 March | 7 April | 133 |
31 | Serling Co | 89 | 31.9 | 4546 | 2201.81 | 17 December | 2 January | 3 April | 18 April | 122 |
32 | Gyaring Co | 88.4 | 31.1 | 4652 | 467.33 | 27 December | 15 January | 1 April | 20 April | 114 |
33 | Ngangze Co | 87.2 | 31.1 | 4682 | 427.97 | 27 November | 7 December | 14 March | 2 April | 127 |
34 | Tangra Yumco | 86.5 | 31 | 4534 | 833.40 | 14 January | 23 January | 6 March | 16 April | 92 |
35 | Xuru Co | 86.4 | 30.3 | 4720 | 207.19 | 29 January | 9 February | 13 March | 18 April | 79 |
36 | Zige Tangco | 90.9 | 32.1 | 4565 | 213.74 | 2 December | 11 December | 10 April | 23 April | 141 |
37 | Bamco | 90.6 | 31.3 | 4563 | 223.15 | 11 December | 28 December | 30 March | 15 April | 125 |
38 | Nam Co | 90.5 | 30.7 | 4725 | 1991.18 | 11 January | 29 January | 8 April | 5 May | 114 |
39 | Puma Yumco | 90.4 | 28.6 | 5012 | 285.63 | 26 December | 13 January | 12 April | 3 May | 128 |
40 | Dorsoidong Co | 89.9 | 33.5 | 4936 | 400.43 | 18 November | 30 November | 8 May | 25 May | 187 |
Bangong Co (2012–2013) | Dagze Co (2012–2013) | Paiku Co (2016–2017) | |||||||||
FUS | FUE | BUS | BUE | FUS | FUE | BUS | BUE | FUS | FUE | BUE | |
Cai et al., 2019 [50] | 9 December | 14 December | 13 April | 17 April | |||||||
Guo et al., 2022 [51] | 12 December | 12 January | 22 April | 2 May | 11 December | 19 December | 3 April | 16 April | 6 January | 15 April | |
Qiu, 2018 [47] | 2 December | 12 December | 11 April | 16 April | |||||||
Qiu, 2019 [31] | |||||||||||
This study | 20 December | 26 December | 25 April | 1 May | 7 December | 14 December | 13 April | 19 April | NF | NF | NF |
Lake temperature observation | 1 December | 22 December | 6 April | 26 April | 17 November | 13 December | 25 February | 17 April | |||
Nam Co (2011–2012) | Nam Co (2012–2013) | Nam Co (2013–2014) | |||||||||
FUS | FUE | BUE | FUS | FUE | BUE | FUS | FUE | BUE | |||
Cai et al., 2019 [50] | 11 January | 9 May | 6 January | 24 May | 10 January | 15 May | |||||
Guo et al., 2022 [51] | 4 January | 28 January | 9 May | 7 January | 27 January | 12 May | 4 January | 5 February | 10 May | ||
Qiu, 2018 [47] | 13 January | 23 January | 27 April | 18 January | 21 January | 18 May | 10 January | 21 January | 24 April | ||
Qiu, 2019 [31] | 4 January | 23 January | 22 May | 14 January | 21 January | 25 April | |||||
This study | 8 January | 11 January | 21 May | 10 January | 23 January | 27 April | |||||
Lake temperature observation | 23 December | 23 January | 2 May | 16 December | 13 January | 10 May | 17 December | 16 January | 1 May |
FUS | FUE | BUS | BUE | |
---|---|---|---|---|
altitude | −0.10 | −0.06 | 0.28 | 0.38 |
longitude | −0.30 | −0.29 | 0.00 | −0.04 |
latitude | −0.71 | −0.72 | 0.44 | 0.41 |
area | 0.20 | 0.22 | −0.22 | −0.27 |
average temperature in December | 0.77 | 0.75 | −0.67 | −0.66 |
average temperature in June | 0.65 | 0.61 | −0.74 | −0.79 |
average wind speed in December | −0.21 | −0.13 | 0.22 | 0.33 |
average annual net shortwave radiation | 0.54 | 0.53 | −0.24 | −0.16 |
average snow depth from December to May | −0.41 | −0.39 | 0.32 | 0.29 |
FID | Name | FUS_Z | FUE_Z | BUS_Z | BUE_Z | ID_Z | FUS_β | FUE_β | BUS_β | BUE_β | ID_β |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Karakul Lake | 1.22 | −0.98 | 1.12 | 1.22 | 0.00 | 0.27 | −0.50 | 0.35 | 0.29 | 0.00 |
2 | Ayakkum Lake | −3.36 | −3.71 | 4.72 | 4.69 | 4.72 | −1.57 | −1.40 | 3.36 | 3.25 | 5.14 |
3 | Har Lake | 1.96 | 1.64 | 0.70 | 1.12 | −0.42 | 0.40 | 0.44 | 0.43 | 0.50 | −0.50 |
4 | Gozha Co | 1.29 | 1.06 | 0.23 | 0.34 | 0.00 | 0.40 | 0.22 | 0.10 | 0.20 | 0.00 |
5 | Bangong Co | 0.00 | 0.14 | −0.59 | −0.42 | −0.45 | 0.00 | 0.00 | −0.23 | −0.17 | −0.40 |
6 | Lumajiangdong Co | 0.91 | 0.31 | −0.52 | −0.07 | −0.14 | 0.18 | 0.06 | −0.29 | 0.00 | −0.06 |
7 | Aqqikkol Lake | −2.10 | −0.73 | 2.31 | 2.31 | 2.94 | −0.33 | −0.23 | 0.88 | 1.00 | 1.38 |
8 | Jingyu Lake | 1.54 | −0.14 | 2.73 | 2.94 | 2.20 | 0.33 | 0.00 | 1.21 | 1.43 | 1.33 |
9 | Dogaicoring Qangco | 2.31 | 2.59 | 3.25 | 3.46 | 2.13 | 0.50 | 0.57 | 1.20 | 1.31 | 0.75 |
11 | Kusai Lake | 2.59 | 2.41 | 0.84 | 1.33 | −0.17 | 0.50 | 0.45 | 0.30 | 0.41 | 0.00 |
12 | Hoh Xil Lake | 2.48 | 1.92 | 1.68 | 1.85 | 0.28 | 0.75 | 0.50 | 0.58 | 0.80 | 0.00 |
13 | Zhuonai Lake | −1.33 | −2.13 | −0.70 | 0.28 | 1.61 | −0.33 | −0.33 | −0.29 | 0.13 | 0.60 |
14 | Ulan Ul Lake | 4.02 | 1.57 | 1.26 | −0.10 | −1.61 | 0.91 | 0.38 | 0.38 | 0.00 | −0.75 |
15 | Lexiewudan Co | −3.11 | −3.60 | 4.55 | 4.69 | 4.69 | −1.17 | −1.25 | 3.50 | 3.42 | 4.20 |
17 | Migriggyangzham Co | −1.61 | −1.75 | −0.38 | 0.07 | 1.47 | −0.50 | −0.50 | −0.25 | 0.00 | 0.59 |
18 | Donggei Cuona Lake | 0.91 | 0.00 | 1.08 | 1.33 | 0.35 | 0.22 | 0.00 | 0.40 | 0.45 | 0.25 |
19 | Gyaring Lake | 0.31 | 1.82 | 0.59 | 0.87 | 0.49 | 0.00 | 0.36 | 0.43 | 0.67 | 0.33 |
20 | Ngoring Lake | 1.36 | 1.40 | 1.19 | 1.26 | 0.10 | 0.50 | 0.44 | 0.67 | 0.67 | 0.00 |
21 | Qinghai Lake | 2.69 | 1.08 | 0.00 | 1.40 | −0.03 | 0.50 | 0.22 | 0.00 | 0.43 | 0.00 |
22 | Langa Co | −1.01 | −1.50 | 0.03 | −0.21 | −0.14 | −0.25 | −0.50 | 0.08 | −0.33 | −0.25 |
23 | Mapam Yumco | 0.98 | 0.63 | −0.45 | −0.21 | −0.77 | 0.20 | 0.25 | −0.25 | −0.20 | −0.63 |
24 | Ngangla Ringco | −0.24 | −1.71 | 1.57 | 1.75 | 1.36 | −0.09 | −0.67 | 0.50 | 0.50 | 0.90 |
26 | Zhari Namco | −0.31 | −0.77 | 1.36 | 0.42 | 0.77 | −0.13 | −0.17 | 0.50 | 0.17 | 0.25 |
28 | Dagze Co | 1.40 | 1.50 | 0.94 | 0.49 | 0.00 | 0.33 | 0.31 | 0.50 | 0.27 | 0.00 |
29 | Urru Co | 0.07 | 1.75 | 0.80 | 0.31 | 0.98 | 0.00 | 0.50 | 0.33 | 0.33 | 0.42 |
30 | Cuoe Lake | 0.35 | −0.63 | −0.35 | −0.49 | −0.52 | 0.08 | −0.33 | −0.13 | −0.25 | −0.36 |
31 | Serling Co | 0.03 | −0.52 | 0.91 | 0.28 | 0.00 | 0.00 | −0.19 | 0.33 | 0.15 | 0.00 |
32 | Gyaring Co | 1.15 | 0.17 | 0.14 | 0.49 | −0.73 | 0.35 | 0.08 | 0.00 | 0.22 | −0.33 |
33 | Ngangze Co | 0.49 | 0.56 | 1.05 | 0.70 | 0.66 | 0.13 | 0.14 | 0.60 | 0.33 | 0.45 |
36 | Zige Tangco | 1.96 | 1.96 | 0.21 | −1.01 | −1.78 | 0.69 | 0.44 | 0.00 | −0.25 | −0.57 |
37 | Bamco | 3.08 | 1.57 | 0.94 | 0.80 | −0.70 | 0.64 | 0.43 | 0.43 | 0.33 | −0.36 |
38 | Nam Co | 0.63 | 0.63 | 0.21 | 0.31 | −0.10 | 0.23 | 0.45 | 0.20 | 0.31 | −0.11 |
39 | Puma Yumco | 0.77 | 0.28 | 0.73 | 0.45 | 0.00 | 0.33 | 0.07 | 0.33 | 0.30 | 0.00 |
40 | Dorsoidong Co | −0.84 | −0.84 | 3.43 | 3.01 | 3.15 | −0.33 | −0.23 | 1.80 | 1.45 | 2.08 |
FID | Name | FUS_Z | FUE_Z | BUS_Z | BUE_Z | ID_Z | FUS_β | FUE_β | BUS_β | BUE_β | ID_β |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Karakul Lake | 1.89 | −0.32 | −0.05 | −0.27 | −1.22 | 0.67 | −0.24 | 0.00 | −0.05 | −0.61 |
2 | Ayakkum Lake | −3.02 | −3.15 | 3.78 | 3.74 | 3.92 | −1.95 | −1.74 | 3.11 | 2.92 | 4.95 |
3 | Har Lake | 2.52 | 1.94 | −1.04 | −0.50 | −2.39 | 0.82 | 0.57 | −0.40 | −0.26 | −1.28 |
4 | Gozha Co | 1.09 | 0.40 | −1.19 | −1.39 | −1.53 | 0.50 | 0.13 | −0.55 | −0.73 | −1.20 |
5 | Bangong Co | 1.17 | 0.81 | −0.23 | 0.18 | −0.68 | 0.33 | 0.30 | −0.11 | 0.08 | −0.71 |
6 | Lumajiangdong Co | 1.49 | 1.76 | −0.77 | −1.40 | −1.62 | 0.45 | 0.46 | −0.56 | −0.50 | −0.96 |
7 | Aqqikkol Lake | −2.43 | −1.89 | 0.99 | 0.86 | 1.67 | −0.50 | −0.71 | 0.50 | 0.35 | 0.93 |
8 | Jingyu Lake | 0.90 | −0.59 | 1.98 | 2.25 | 1.80 | 0.17 | −0.29 | 0.94 | 1.32 | 1.24 |
9 | Dogaicoring Qangco | 2.16 | 2.25 | 2.88 | 2.97 | 1.35 | 0.75 | 0.50 | 1.11 | 1.37 | 0.58 |
11 | Kusai Lake | 2.84 | 2.34 | −0.59 | 0.00 | −1.98 | 0.60 | 0.45 | −0.25 | 0.00 | −0.64 |
12 | Hoh Xil Lake | 3.42 | 2.03 | 0.95 | 1.58 | −0.41 | 1.29 | 0.78 | 0.44 | 0.68 | −0.24 |
13 | Zhuonai Lake | −1.76 | −2.79 | −2.48 | −1.17 | 0.23 | −0.44 | −0.63 | −0.79 | −0.33 | 0.06 |
14 | Ulan Ul Lake | 3.38 | 0.50 | 0.23 | −0.81 | −1.94 | 1.00 | 0.08 | 0.10 | −0.48 | −1.33 |
15 | Lexiewudan Co | −2.61 | −2.93 | 3.83 | 3.92 | 3.92 | −1.19 | −1.36 | 3.41 | 3.20 | 4.00 |
17 | Migriggyangzham Co | −1.49 | −1.31 | −1.44 | −0.77 | 0.41 | −0.57 | −0.50 | −1.00 | −0.60 | 0.21 |
18 | Donggei Cuona Lake | 1.44 | 0.27 | 0.36 | 0.81 | −0.45 | 0.41 | 0.10 | 0.26 | 0.39 | −0.25 |
19 | Gyaring Lake | −0.27 | 1.44 | −0.09 | 0.32 | 0.05 | 0.00 | 0.28 | −0.13 | 0.35 | 0.10 |
20 | Ngoring Lake | 1.04 | 0.59 | 0.32 | 0.23 | −0.63 | 0.50 | 0.32 | 0.33 | 0.33 | −0.38 |
21 | Qinghai Lake | 2.12 | 0.99 | −0.86 | 0.00 | −1.26 | 0.60 | 0.37 | −0.50 | 0.00 | −0.85 |
22 | Langa Co | −0.27 | −0.63 | 0.00 | −0.59 | −0.50 | −0.24 | −0.32 | −0.08 | −0.55 | −0.63 |
23 | Mapam Yumco | 1.49 | 1.71 | −0.14 | −0.27 | −1.13 | 0.58 | 1.00 | −0.11 | −0.27 | −1.56 |
24 | Ngangla Ringco | 0.77 | −0.09 | 0.77 | 0.86 | 0.14 | 0.33 | 0.00 | 0.19 | 0.32 | 0.00 |
26 | Zhari Namco | 0.36 | 0.09 | 0.41 | −0.14 | −0.18 | 0.32 | 0.00 | 0.20 | −0.12 | 0.00 |
28 | Dagze Co | 2.07 | 1.94 | 0.63 | 0.09 | −0.81 | 0.74 | 0.68 | 0.29 | 0.00 | −0.42 |
29 | Urru Co | 0.90 | 2.25 | 0.41 | 0.14 | 0.54 | 0.50 | 0.68 | 0.31 | 0.25 | 0.33 |
30 | Cuoe Lake | 0.72 | 0.18 | −0.77 | −1.62 | −1.67 | 0.17 | 0.03 | −0.54 | −1.00 | −0.83 |
31 | Serling Co | 0.77 | 0.45 | 0.59 | −0.23 | −0.90 | 0.52 | 0.11 | 0.33 | −0.09 | −0.67 |
32 | Gyaring Co | 2.48 | 1.26 | −0.09 | −0.09 | −1.89 | 0.84 | 0.68 | 0.00 | −0.05 | −0.87 |
33 | Ngangze Co | 0.95 | 1.71 | 1.13 | 0.95 | 0.77 | 0.33 | 0.78 | 0.91 | 0.52 | 0.57 |
36 | Zige Tangco | 2.48 | 2.21 | −0.45 | −1.49 | −2.48 | 1.15 | 1.00 | −0.13 | −0.37 | −1.10 |
37 | Bamco | 3.56 | 1.89 | 0.54 | 0.18 | −1.53 | 1.16 | 1.00 | 0.35 | 0.20 | −1.27 |
38 | Nam Co | 0.77 | 0.95 | 0.36 | 0.27 | −0.54 | 0.33 | 1.00 | 0.44 | 0.50 | −0.73 |
39 | Puma Yumco | 1.22 | 0.05 | 0.18 | 0.23 | −0.27 | 0.41 | 0.00 | 0.07 | 0.31 | −0.12 |
40 | Dorsoidong Co | −1.62 | −1.17 | 2.66 | 2.12 | 2.52 | −0.58 | −0.40 | 1.46 | 1.21 | 1.96 |
Changes of Lake Ice Phenology in 34 Completely Frozen Lakes from 2002 to 2018 | |||
Parameter | Average Date/Days | Number (Proportion) | Change Rate (Days/Year) |
FUS | 22 December | 26 (76.5%) | 0.59 |
8 (23.5%) | −0.68 | ||
BUE | 22 May | 18 (52.9%) | 0.79 |
14 (41.2%) | −0.38 | ||
ID | 153 | 22 (64.7%) | −0.76 |
12 (35.3%) | 1.24 | ||
Changes of Lake Ice Phenology in 34 Completely Frozen Lakes from 2002 to 2021 | |||
Parameter | Average Date/Days | Number (Proportion) | Change Rate (Days/Year) |
FUS | 9 December | 24 (70.6%) | 0.35 |
9 (26.5%) | −0.52 | ||
BUE | 5 May | 27(79.4%) | 0.72 |
7 (20.6%) | −0.17 | ||
ID | 147 | 13 (38.2%) | −0.33 |
16(47.1%) | 1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Wang, B.; Ma, Y.; Shi, X.; Wang, Y. Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau. Sensors 2023, 23, 1661. https://doi.org/10.3390/s23031661
Sun L, Wang B, Ma Y, Shi X, Wang Y. Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau. Sensors. 2023; 23(3):1661. https://doi.org/10.3390/s23031661
Chicago/Turabian StyleSun, Lijun, Binbin Wang, Yaoming Ma, Xingdong Shi, and Yan Wang. 2023. "Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau" Sensors 23, no. 3: 1661. https://doi.org/10.3390/s23031661
APA StyleSun, L., Wang, B., Ma, Y., Shi, X., & Wang, Y. (2023). Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau. Sensors, 23(3), 1661. https://doi.org/10.3390/s23031661