Traceability Management System Using Blockchain Technology and Cost Estimation in the Metrology Field
Abstract
:1. Introduction
1.1. Issues Related to Traceability Management in the Field of Metrology
1.2. Calibration Information as Digital Data and Digital Calibration Certificate (DCC)
1.3. Digital Security of Calibration Information and Blockchain Technology
Private Chains | Public Chains | |
---|---|---|
Consensus building | Consensus-building costs (fees and time) are generally small. | Consensus-building costs (fees and time) are generally significant. |
Robustness | The possibility exists that data may be tampered with by certain participants. A single point of failure may exist. | For the cost of consensus building, the likelihood of data being falsified by a particular participant is generally low. |
Chain participants | Specific (licensed individuals and companies) | Unspecified |
Application examples in the field of metrology | HF [26,30,31,32,33,34,44] | Ethereum [26,38,39,40,45,46,47], IOTA [41] |
1.4. Contents of This Study
2. Building a Traceability Management System Using a Smart Contract
2.1. Smart Contract of Ethereum
2.2. Preparations Required to Execute Smart Contract
2.3. Smart Contract on the RTP
Algorithm 1: Smart contract on the recognizable traceability path (RTP) written using Solidity in this study. | |
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: 29: 30: 31: 32: 33: 34: 35: 36: 37: 38: 39: 40: | // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; contract RecognizableTraceabilityPath { address public institutionID; Point[] public points; struct Point { string data; uint referenceID; } constructor() { institutionID = msg.sender; } function add(string memory _data, uint _referenceID) public { if(institutionID != msg.sender){ revert(); }else{ points.push(Point(_data, _referenceID)); } } function RTP(uint _startID) view public returns(string[] memory) { uint ID = points[_startID].referenceID; uint rank = 1; while(ID != 0) { rank++; ID = points[ID].referenceID; } string[] memory rtp = new string[](rank); rtp[0] = points[_startID].data; ID = points[_startID].referenceID; for (uint i = 1; i < rank; i++) { rtp[i] = points[ID].data; ID = points[ID].referenceID; } return rtp; } } |
3. Cost Estimation of the RTP
3.1. Overview of Transaction Fees
3.2. Gas Price
3.3. Gas Usage
3.4. Feasibility of RTP Using Ethereum in the Field of Metrology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ISO 10012; Measurement Management Systems–Requirements for Measurement Processes and Measuring Equipment. International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 17025; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2006.
- Joint Committee for Guides in Metrology. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), 3rd ed. Available online: https://www.bipm.org/en/committees/jc/jcgm/publications (accessed on 29 January 2023).
- Takatsuji, T.; Watanabe, H.; Yamashita, Y. Blockchain technology to visualize the metrological traceability. Precis. Eng. 2019, 58, 1–6. [Google Scholar] [CrossRef]
- Miličević, K.; Tolić, I.; Vinko, D.; Horvat, G. Blockchain-Based Concept for Digital Transformation of Traceability Pyramid for Electrical Energy Measurement. Sensors 2022, 22, 9292. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.; Sousa, J.A.; Ribeiro, L. Calibration 4.0–Information system for usage of digital calibration certificates. In Proceedings of the 19th International Congress of Metrology (CIM2019), Paris, France, 24–26 September 2019; p. 01002. [Google Scholar]
- Boschung, G.; Wollensack, M.; Zeier, M.; Blaser, C.; Hof, C.; Stathis, M.; Blattner, P.; Stuker, F.; Basic, N.; Toro, F.G. PDF/A-3 solution for digital calibration certificates. Meas. Sens. 2021, 18, 100282. [Google Scholar] [CrossRef]
- Bruns, T.; Nordholz, J.; Röske, D.; Schrader, T. A demonstrator for measurement workflows using digital calibration certificates (DCCs). Meas. Sens. 2021, 18, 100208. [Google Scholar] [CrossRef]
- Hackel, S.; Härtig, F.; Hornig, J.; Wiedenhöfer, T. The digital calibration certificate. PTB-Mitt. 2017, 127, 75–81. [Google Scholar]
- Mustapää, T.; Nikander, P.; Hutzschenreuter, D.; Viitala, R. Metrological challenges in collaborative sensing: Applicability of digital calibration certificates. Sensors 2020, 20, 4730. [Google Scholar]
- Ačko, B.; Weber, H.; Hutzschenreuter, D.; Smith, I. Communication and validation of metrological smart data in IoT-networks. Adv. Prod. Eng. Manag. 2020, 15, 107–117. [Google Scholar] [CrossRef]
- Gadelrab, M.S.; Abouhogail, R.A. Towards a new generation of digital calibration certificate: Analysis and survey. Measurement 2021, 181, 109611. [Google Scholar] [CrossRef]
- CIPM Task Group on the Digital SI (CIPM-TG-DSI). Available online: https://www.bipm.org/en/committees/ci/cipm/wg/cipm-tg-dsi (accessed on 29 January 2023).
- Chen, C.L.; Zhu, Z.P.; Zhou, M.; Tsaur, W.J.; Wu, C.M.; Sun, H. A Secure and Traceable Vehicles and Parts System Based on Blockchain and Smart Contract. Sensors 2022, 22, 6754. [Google Scholar] [CrossRef]
- Ai, Y.; Chen, C.L.; Weng, W.; Chiang, M.L.; Deng, Y.Y.; Lim, Z.Y. A Traceable Vaccine Supply Management System. Sensors 2022, 2, 9670. [Google Scholar]
- Guo, X.; Zhang, G.; Zhang, Y. A Comprehensive Review of Blockchain Technology-Enabled Smart Manufacturing: A Framework, Challenges and Future Research Directions. Sensors 2023, 23, 155. [Google Scholar] [CrossRef] [PubMed]
- Zubaydi, H.D.; Varga, P.; Molnár, S. Leveraging Blockchain Technology for Ensuring Security and Privacy Aspects in Internet of Things: A Systematic Literature Review. Sensors 2023, 23, 788. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, A.K.; Dananjayan, S.; Agarwal, D.; Thariq Ahmed, H.F. Blockchain—Internet of Things Applications: Opportunities and Challenges for Industry 4.0 and Society 5.0. Sensors 2023, 23, 947. [Google Scholar] [CrossRef] [PubMed]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Long, C.; Ming, W. State-of-the-art analysis and perspectives for peer-to-peer energy trading. Engineering 2020, 6, 739–753. [Google Scholar] [CrossRef]
- Leng, J.; Ruan, G.; Jiang, P.; Xu, K.; Liu, Q.; Zhou, X.; Liu, C. Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey. Renew. Sustain. Energy Rev. 2020, 132, 110112. [Google Scholar] [CrossRef]
- Chen, S.; Yang, L.; Zhao, C.; Varadarajan, V.; Wang, K. Double-blockchain assisted secure and anonymous data aggregation for fog-enabled smart grid. Engineering 2020, 8, 159–169. [Google Scholar] [CrossRef]
- Iftikhar, Z.; Javed, Y.; Zaidi, S.Y.A.; Shah, M.A.; Iqbal Khan, Z.; Mussadiq, S.; Abbasi, K. Privacy preservation in resource-constrained IoT devices using blockchain—A survey. Electronics 2021, 10, 1732. [Google Scholar] [CrossRef]
- Suvarna, M.; Yap, K.S.; Yang, W.; Li, J.; Ng, Y.T.; Wang, X. Cyber–Physical Production Systems for Data-Driven, Decentralized, and Secure Manufacturing—A Perspective. Engineering 2021, 7, 1212–1223. [Google Scholar] [CrossRef]
- Barbosa, C.R.H.; Sousa, M.C.; Almeida, M.F.L.; Calili, R.F. Smart Manufacturing and Digitalization of Metrology: A Systematic Literature Review and a Research Agenda. Sensors 2022, 22, 6114. [Google Scholar] [CrossRef]
- Miličević, K.; Omrčen, L.; Kohler, M.; Lukić, I. Trust model concept for IoT blockchain applications as part of the digital transformation of metrology. Sensors 2022, 22, 4708. [Google Scholar] [CrossRef] [PubMed]
- Zakaret, C.; Peladarinos, N.; Cheimaras, V.; Tserepas, E.; Papageorgas, P.; Aillerie, M.; Piromalis, D.; Agavanakis, K. Blockchain and Secure Element, a Hybrid Approach for Secure Energy Smart Meter Gateways. Sensors 2022, 22, 9664. [Google Scholar] [CrossRef] [PubMed]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15. [Google Scholar]
- Moni, M.; Melo, W., Jr.; Peters, D.; Machado, R. When Measurements Meet Blockchain: On Behalf of an Inter-NMI Network. Sensors 2021, 21, 1564. [Google Scholar] [CrossRef] [PubMed]
- Melo, W.; Carmo, L.F.; Bessani, A.; Neves, N.; Santin, A. How blockchains can improve measuring instruments regulation and control. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar]
- Melo, W.S.; Bessani, A.; Neves, N.; Santin, A.O.; Carmo, L.F.R.C. Using blockchains to implement distributed measuring systems. IEEE Trans. Instrum. Meas. 2019, 68, 1503–1514. [Google Scholar] [CrossRef]
- Yurchenko, A.; Moni, M.; Peters, D.; Nordholz, J.; Thiel, F. Security for Distributed Smart Meter: Blockchain-based Approach, Ensuring Privacy by Functional Encryption. In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), Online, 7–9 May 2020; pp. 292–301. [Google Scholar]
- Peters, D.; Wetzlich, J.; Thiel, F.; Seifert, J.P. Blockchain applications for legal metrology. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar]
- Peters, D.; Yurchenko, A.; Melo, W.; Shirono, K.; Usuda, T.; Seifert, J.P.; Thiel, F. IT security for measuring instruments: Confidential checking of software functionality. In Proceedings of the Future of Information and Communication Conference, San Francisco, CA, USA, 5–6 March 2020; pp. 701–720. [Google Scholar]
- Dannen, C. Introducing Ethereum and Solidity; Apress: New York, NY, USA, 2017; Volume 1, pp. 159–160. [Google Scholar]
- Atzei, N.; Bartoletti, M.; Cimoli, T. A survey of attacks on ethereum smart contracts (sok). In Proceedings of the International Conference on Principles of Security and Trust, Uppsala, Sweden, 22–29 April 2017; pp. 164–186. [Google Scholar]
- Wood, E. A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 4836820. [Google Scholar]
- Iqbal, R.; Butt, T.A.; Afzaal, M.; Salah, K. Trust management in social internet of vehicles: Factors, challenges, blockchain, and fog solutions. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719825820. [Google Scholar] [CrossRef]
- Shah, R.; McIntee, M.; Nagaraja, S.; Bhandary, S.; Arote, P.; Kuri, J. Secure Calibration for Safety-Critical IoT: Traceability for Safety Resilience. arXiv 2019, arXiv:1908.00740. [Google Scholar]
- De Santis, L.; Paciello, V.; Pietrosanto, A. Blockchain-based infrastructure to enable trust in IoT environment. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Peterek, M.; Montavon, B. Prototype for dual digital traceability of metrology data using X. 509 and IOTA. CIRP Ann. 2020, 69, 449–452. [Google Scholar] [CrossRef]
- Popov, S. The tangle. White Pap. 2018, 1, 30. [Google Scholar]
- Silvano, W.F.; Marcelino, R. Iota Tangle: A cryptocurrency to communicate Internet-of-Things data. Future Gener. Comput. Syst. 2020, 112, 307–319. [Google Scholar] [CrossRef]
- Melo, W.S., Jr.; Tarelho, L.V.; Rodrigues Filho, B.A.; Bessani, A.N.; Carmo, L.F. Field surveillance of fuel dispensers using IoT-based metering and blockchains. J. Netw. Comput. Appl. 2021, 175, 102914. [Google Scholar] [CrossRef]
- Kennedy, Z.C.; Stephenson, D.E.; Christ, J.F.; Pope, T.R.; Arey, B.W.; Barrett, C.A.; Warner, M.G. Enhanced anti-counterfeiting measures for additive manufacturing: Coupling lanthanide nanomaterial chemical signatures with blockchain technology. J. Mater. Chem. C 2017, 5, 9570–9578. [Google Scholar] [CrossRef]
- D’Emilia, G.; Gaspari, A.; Natale, E.; Adduce, G.; Vecchiarelli, S. All-Around Approach for Reliability of Measurement Data in the Industry 4.0. IEEE Instrum. Meas. Mag. 2021, 24, 30–37. [Google Scholar] [CrossRef]
- More, S.S.; Patel, N.; Parab, S.; Maurya, S. Blockchain based Tamper Proof Certificates. In Proceedings of the International Conference on Smart Data Intelligence (ICSMDI 2021), Tamil Nadu, India, 29–30 April 2021. [Google Scholar]
- Christidis, K.; Devetsikiotis, M. Blockchains and smart contracts for the internet of things. IEEE Access 2016, 4, 2292–2303. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, Y.; Wang, X.; Li, J.; Qin, R.; Wang, F.Y. An overview of smart contract: Architecture, applications, and future trends. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26–30 June 2018; pp. 108–113. [Google Scholar]
- Hewa, T.; Ylianttila, M.; Liyanage, M. Survey on blockchain based smart contracts: Applications, opportunities and challenges. J. Netw. Comput. Appl. 2021, 177, 102857. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv 2021, arXiv:2105.07447. [Google Scholar]
- Buterin, V.; Conner, E.; Dudley, R.; Slipper, M.; Norden, I.; Bakhta, A. EIP-1559: Fee Market Change for ETH 1.0 Chain. Available online: https://eips.ethereum.org/EIPS/eip-1559 (accessed on 29 January 2023).
- Wood, E. A Secure Decentralised Generalised Transaction Ledger Berlin Version. Available online: https://ethereum.github.io/yellowpaper/paper.pdf (accessed on 29 January 2023).
- National Institute of Technology and Evaluation. Number of Jcss Calibration Certificates Issued in fy 2019–2021. Available online: https://www.nite.go.jp/data/000049535.pdf (accessed on 29 January 2023). (In Japanese).
- Poon, J.; Dryja, T. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. Available online: https://lightning.network/lightning-network-paper.pdf (accessed on 29 January 2023).
- Rohrer, E.; Malliaris, J.; Tschorsch, F. Discharged payment channels: Quantifying the lightning network’s resilience to topology-based attacks. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 17–19 June 2019; pp. 347–356. [Google Scholar]
- Bez, M.; Fornari, G.; Vardanega, T. The scalability challenge of ethereum: An initial quantitative analysis. In Proceedings of the 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 4–9 April 2019; pp. 167–176. [Google Scholar]
- Saleh, F. Blockchain without waste: Proof-of-stake. Rev. Financ. Stud. 2021, 34, 1156–1190. [Google Scholar] [CrossRef]
- Gervais, A.; Karame, G.O.; Wüst, K.; Glykantzis, V.; Ritzdorf, H.; Capkun, S. On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 3–16. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takegawa, N.; Furuichi, N. Traceability Management System Using Blockchain Technology and Cost Estimation in the Metrology Field. Sensors 2023, 23, 1673. https://doi.org/10.3390/s23031673
Takegawa N, Furuichi N. Traceability Management System Using Blockchain Technology and Cost Estimation in the Metrology Field. Sensors. 2023; 23(3):1673. https://doi.org/10.3390/s23031673
Chicago/Turabian StyleTakegawa, Naoki, and Noriyuki Furuichi. 2023. "Traceability Management System Using Blockchain Technology and Cost Estimation in the Metrology Field" Sensors 23, no. 3: 1673. https://doi.org/10.3390/s23031673
APA StyleTakegawa, N., & Furuichi, N. (2023). Traceability Management System Using Blockchain Technology and Cost Estimation in the Metrology Field. Sensors, 23(3), 1673. https://doi.org/10.3390/s23031673