Color Image Restoration Using Sub-Image Based Low-Rank Tensor Completion
Abstract
:1. Introduction
- We propose a novel framework of sub-image based low-rank tensor completion for color image restoration. The tensor nuclear norm is based on the tensor tubal rank (TTR), which is obtained by the tensor-singular value decomposition (t-SVD) in this framework. In order to achieve the stronger low-rank tensor, we sample each channel of a color image into four sub-images, and use these sub-images instead of the original single image to form a tensor.
- The optimization completion is performed on the permuted tensor in the proposed framework. The mode of a third-order tensor of a color image is usually denoted by (row × column × RGB). It is permuted to the mode (row × RGB × column) in our framework. This permutation operation can make a better restoration and decrease the running time.
2. Related Work and Foundation
2.1. Notations and Definitions
2.2. Tensor Singular Value Decomposition
3. Proposed Model
3.1. Sub-Image Generation
3.2. Mode Permutation
3.3. Solution to the Proposed Method
4. Experiments
4.1. Color Image Recovery
4.2. Color Video Recovery
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Hu, W.; Jin, T.; Mei, Z. Nonlocal image denoising via adaptive tensor nuclear norm minimization. Neural Comput. Appl. 2015, 29, 3–19. [Google Scholar] [CrossRef]
- Rajwade, A.; Rangarajan, A.; Banerjee, A. Image Denoising Using the Higher Order Singular Value Decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 35, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Kolda, T.G.; Bader, B.W. Tensor Decompositions and Applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Liu, J.; Musialski, P.; Wonka, P.; Ye, J. Tensor Completion for Estimating Missing Values in Visual Data. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Feng, J.; Lin, Z.; Yan, S. Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements. In Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 1948–1954. [Google Scholar]
- Zhou, P.; Lu, C.; Lin, Z.; Zhang, C. Tensor Factorization for Low-Rank Tensor Completion. IEEE Trans. Image Process. 2018, 27, 1152–1163. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jing, X.Y.; Tang, G.; Wu, F.; Dong, X. Low-rank tensor completion for visual data recovery via the tensor train rank-1 decomposition. IET Image Process. 2020, 14, 114–124. [Google Scholar] [CrossRef]
- Kilmer, M.E.; Martin, C.D. Factorization Strategies for Third-order Tensors. Linear Algebra Appl. 2011, 435, 641–658. [Google Scholar] [CrossRef]
- Kilmer, M.E.; Braman, K.; Hao, N.; Hoover, R.C. Third-order Tensors as Operators on Matrices: A Theoretical and Computational Framework with in Imaging. SIAM J. Matrix Anal. Appl. 2013, 34, 148–172. [Google Scholar] [CrossRef]
- Martin, C.D.; Shafer, R.; LaRue, B. An order-p Tensor Factorization with Applications in Imaging. SIAM J. Sci. Comput. 2013, 35, A474–A490. [Google Scholar] [CrossRef]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor robust Principal Component Analysis: Exact Recovery of Corrupted Low-rank Tensors via Convex Optimization. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5249–5257. [Google Scholar]
- Semerci, O.; Hao, N.; Kilmer, M.E.; Miller, E.L. Tensor-based Formulation and Nuclear Norm Regularization for Multienergy Computed Tomography. IEEE Trans. Image Process. 2014, 23, 1678–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Huang, L.; So, H.C.; Wang, J. Orthogonal Tubal Rank-1 Tensor Pursuit for Tensor Completion. Signal Process. 2019, 157, 213–224. [Google Scholar] [CrossRef]
- Sun, W.; Chen, Y.; Huang, L.; So, H.C. Tensor Completion via Generalized Tensor Tubal Rank Minimization using General Unfolding. IEEE Signal Process. Lett. 2018, 25, 868–872. [Google Scholar] [CrossRef]
- Long, Z.; Liu, Y.; Chen, L.; Zhu, C. Low Rank Tensor Completion for Multiway Visual Data. Signal Process. 2019, 155, 301–316. [Google Scholar] [CrossRef]
- Zhang, Z.; Ely, G.; Aeron, S.; Hao, N.; Kilmer, M. Novel methods for multilinear data completion and denoising based on tensor-SVD. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3842–3849. [Google Scholar]
- Wang, A.; Song, X.; Wu, X.; Lai, Z.; Jin, Z. Generalized Dantzig Selector for Low-tubal-rank Tensor Recovery. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 3427–3431. [Google Scholar]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor Robust Principal Component Analysis with A New Tensor Nuclear Norm. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Zdunek, R.; Fonal, K.; Sadowski, T. Image Completion with Filtered Low-Rank Tensor Train Approximations. In Proceedings of the International Work-Conference on Artificial Neural Networks, Part II, Gran Canaria, Spain, 12–14 June 2019; pp. 235–245. [Google Scholar]
- Lu, C.; Feng, J.; Yan, S.; Lin, Z. A Unified Alternating Direction Method of Multipliers by Majorization Minimization. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ren, W.; Luo, W.; Lai, W.S.; Stenger, B.; Yang, M.H.; Li, H. Deep image deblurring: A survey. Int. J. Comput. Vis. 2022, 130, 2103–2130. [Google Scholar] [CrossRef]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Multi-stage progressive image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14821–14831. [Google Scholar]
Test Images | Missngrate | FaLRTC [4] | LRTC-TNN1 [5] | LRTC-TNN2 [5] | TCTF [6] | LRTV-TTr1 [7] | SLRTC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
Airplane | 30% | 34.72 | 0.973 | 34.34 | 0.967 | 34.34 | 0.974 | 29.48 | 0.919 | 37.73 | 0.991 | 36.35 | 0.981 |
50% | 29.79 | 0.919 | 29.23 | 0.906 | 30.23 | 0.940 | 26.77 | 0.849 | 32.90 | 0.971 | 31.53 | 0.951 | |
70% | 25.24 | 0.794 | 24.68 | 0.777 | 26.12 | 0.858 | 18.63 | 0.522 | 28.57 | 0.924 | 27.07 | 0.875 | |
Baboon | 30% | 28.19 | 0.928 | 28.62 | 0.929 | 30.15 | 0.954 | 26.30 | 0.892 | 29.80 | 0.955 | 30.76 | 0.961 |
50% | 24.75 | 0.820 | 24.84 | 0.821 | 26.23 | 0.875 | 23.81 | 0.773 | 26.23 | 0.873 | 26.89 | 0.889 | |
70% | 22.00 | 0.644 | 21.60 | 0.629 | 22.71 | 0.714 | 17.00 | 0.394 | 23.60 | 0.731 | 23.31 | 0.730 | |
Barbara | 30% | 34.57 | 0.973 | 37.55 | 0.983 | 36.41 | 0.982 | 29.72 | 0.924 | 37.52 | 0.980 | 38.69 | 0.989 |
50% | 29.76 | 0.919 | 30.86 | 0.926 | 30.43 | 0.930 | 27.49 | 0.858 | 32.45 | 0.956 | 32.50 | 0.954 | |
70% | 25.39 | 0.795 | 25.40 | 0.784 | 25.61 | 0.806 | 19.79 | 0.572 | 28.38 | 0.889 | 27.36 | 0.856 | |
Facade | 30% | 37.58 | 0.989 | 39.20 | 0.992 | 36.82 | 0.989 | 35.22 | 0.980 | 37.71 | 0.989 | 38.71 | 0.992 |
50% | 33.49 | 0.969 | 34.60 | 0.973 | 31.59 | 0.960 | 30.36 | 0.946 | 33.21 | 0.966 | 33.35 | 0.971 | |
70% | 29.77 | 0.925 | 30.42 | 0.931 | 27.32 | 0.890 | 20.84 | 0.718 | 29.07 | 0.901 | 28.54 | 0.909 | |
House | 30% | 30.08 | 0.977 | 30.81 | 0.959 | 30.02 | 0.962 | 32.26 | 0.941 | 30.26 | 0.982 | 38.45 | 0.984 |
50% | 28.68 | 0.938 | 29.14 | 0.913 | 28.73 | 0.930 | 30.06 | 0.886 | 29.37 | 0.957 | 34.20 | 0.958 | |
70% | 26.17 | 0.844 | 26.14 | 0.800 | 26.55 | 0.859 | 19.65 | 0.517 | 27.94 | 0.912 | 29.88 | 0.893 | |
Peppers | 30% | 31.34 | 0.949 | 30.86 | 0.931 | 30.12 | 0.938 | 26.74 | 0.849 | 34.64 | 0.981 | 34.30 | 0.970 |
50% | 27.66 | 0.882 | 26.53 | 0.839 | 26.59 | 0.872 | 25.74 | 0.810 | 30.79 | 0.956 | 29.96 | 0.930 | |
70% | 23.64 | 0.733 | 22.06 | 0.656 | 22.79 | 0.733 | 18.99 | 0.515 | 27.17 | 0.905 | 25.76 | 0.831 | |
Sailboat | 30% | 31.54 | 0.959 | 31.05 | 0.948 | 32.33 | 0.969 | 27.53 | 0.898 | 33.69 | 0.981 | 33.47 | 0.976 |
50% | 27.16 | 0.889 | 26.74 | 0.869 | 27.87 | 0.915 | 24.88 | 0.808 | 29.68 | 0.950 | 29.07 | 0.933 | |
70% | 23.13 | 0.742 | 22.75 | 0.711 | 23.94 | 0.795 | 17.56 | 0.487 | 26.02 | 0.882 | 25.10 | 0.830 | |
Giant | 30% | 30.01 | 0.953 | 31.37 | 0.960 | 32.13 | 0.974 | 27.07 | 0.905 | 32.22 | 0.978 | 33.04 | 0.979 |
50% | 25.72 | 0.874 | 26.65 | 0.877 | 27.51 | 0.919 | 24.40 | 0.813 | 28.05 | 0.937 | 28.34 | 0.932 | |
70% | 22.03 | 0.717 | 22.46 | 0.713 | 23.44 | 0.797 | 17.65 | 0.502 | 24.50 | 0.844 | 24.25 | 0.818 | |
Tiger | 30% | 33.16 | 0.976 | 37.58 | 0.988 | 37.55 | 0.991 | 28.39 | 0.918 | 36.97 | 0.990 | 39.29 | 0.994 |
50% | 27.89 | 0.914 | 30.12 | 0.936 | 30.65 | 0.955 | 25.19 | 0.823 | 31.13 | 0.958 | 32.39 | 0.969 | |
70% | 23.34 | 0.763 | 24.33 | 0.779 | 25.13 | 0.843 | 18.01 | 0.516 | 26.55 | 0.873 | 26.48 | 0.877 |
Test Images | FaLRTC [4] | LRTC-TNN1 [5] | LRTC-TNN2 [5] | TCTF [6] | LRTV-TTr1 [7] | SLRTC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
kodim01 | 33.57 | 0.989 | 39.68 | 0.990 | 39.06 | 0.991 | 29.03 | 0.927 | 35.98 | 0.997 | 41.01 | 0.994 |
kodim02 | 38.42 | 0.992 | 41.80 | 0.987 | 41.31 | 0.989 | 33.28 | 0.942 | 38.58 | 0.996 | 44.39 | 0.994 |
kodim03 | 38.33 | 0.994 | 40.75 | 0.987 | 42.68 | 0.995 | 31.87 | 0.924 | 37.82 | 0.997 | 44.64 | 0.996 |
kodim04 | 38.16 | 0.993 | 40.92 | 0.986 | 34.28 | 0.984 | 31.76 | 0.921 | 37.89 | 0.997 | 43.58 | 0.994 |
kodim05 | 31.12 | 0.989 | 35.82 | 0.983 | 36.67 | 0.990 | 24.80 | 0.858 | 33.99 | 0.996 | 38.98 | 0.994 |
kodim06 | 34.57 | 0.989 | 39.60 | 0.989 | 41.20 | 0.995 | 29.76 | 0.925 | 36.02 | 0.996 | 42.20 | 0.996 |
kodim07 | 37.71 | 0.996 | 41.08 | 0.990 | 42.34 | 0.995 | 30.13 | 0.910 | 37.64 | 0.998 | 44.41 | 0.996 |
kodim08 | 31.63 | 0.991 | 37.02 | 0.987 | 34.59 | 0.987 | 25.45 | 0.897 | 34.95 | 0.997 | 37.82 | 0.993 |
kodim09 | 38.49 | 0.995 | 42.38 | 0.990 | 34.33 | 0.987 | 32.38 | 0.943 | 38.11 | 0.998 | 43.85 | 0.995 |
kodim10 | 37.45 | 0.994 | 41.53 | 0.989 | 34.00 | 0.987 | 31.90 | 0.935 | 37.95 | 0.998 | 43.43 | 0.995 |
kodim11 | 34.83 | 0.991 | 39.48 | 0.988 | 40.39 | 0.993 | 30.37 | 0.929 | 36.40 | 0.996 | 42.18 | 0.995 |
kodim12 | 39.11 | 0.994 | 43.00 | 0.990 | 42.59 | 0.994 | 34.10 | 0.946 | 38.71 | 0.997 | 44.80 | 0.995 |
kodim13 | 29.23 | 0.981 | 34.58 | 0.982 | 36.30 | 0.989 | 25.09 | 0.885 | 32.61 | 0.993 | 37.07 | 0.991 |
kodim14 | 33.18 | 0.989 | 36.35 | 0.981 | 37.92 | 0.990 | 27.51 | 0.890 | 34.70 | 0.995 | 39.83 | 0.993 |
kodim15 | 37.09 | 0.992 | 40.39 | 0.985 | 38.97 | 0.987 | 31.00 | 0.923 | 38.01 | 0.997 | 42.03 | 0.993 |
kodim16 | 38.77 | 0.993 | 43.40 | 0.992 | 45.51 | 0.996 | 33.28 | 0.944 | 37.72 | 0.997 | 46.23 | 0.997 |
kodim17 | 36.72 | 0.994 | 40.56 | 0.989 | 41.69 | 0.994 | 31.14 | 0.925 | 41.31 | 0.998 | 42.79 | 0.995 |
kodim18 | 32.57 | 0.987 | 36.62 | 0.980 | 36.91 | 0.987 | 27.89 | 0.888 | 36.50 | 0.996 | 38.60 | 0.991 |
kodim19 | 36.34 | 0.992 | 40.81 | 0.988 | 39.06 | 0.990 | 30.86 | 0.927 | 40.60 | 0.997 | 41.81 | 0.994 |
kodim20 | 36.56 | 0.994 | 40.02 | 0.988 | 40.73 | 0.992 | 31.08 | 0.939 | 37.77 | 0.998 | 42.12 | 0.994 |
kodim21 | 34.77 | 0.993 | 39.06 | 0.987 | 40.73 | 0.993 | 29.06 | 0.924 | 35.98 | 0.997 | 41.58 | 0.994 |
kodim22 | 35.79 | 0.990 | 38.93 | 0.983 | 38.30 | 0.986 | 30.78 | 0.915 | 36.88 | 0.995 | 40.16 | 0.990 |
kodim23 | 37.39 | 0.996 | 36.61 | 0.990 | 37.59 | 0.989 | 31.66 | 0.921 | 37.13 | 0.998 | 44.17 | 0.994 |
kodim24 | 31.51 | 0.987 | 34.76 | 0.978 | 35.68 | 0.986 | 27.17 | 0.896 | 35.28 | 0.996 | 36.77 | 0.990 |
Test Images | FaLRTC [4] | LRTC-TNN1 [5] | LRTC-TNN2 [5] | TCTF [6] | LRTV-TTr1 [7] | SLRTC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
kodim01 | 29.05 | 0.959 | 32.58 | 0.948 | 32.31 | 0.958 | 26.67 | 0.851 | 31.82 | 0.984 | 34.01 | 0.970 |
kodim02 | 33.84 | 0.971 | 35.22 | 0.944 | 35.43 | 0.960 | 31.59 | 0.890 | 35.36 | 0.985 | 37.67 | 0.972 |
kodim03 | 33.77 | 0.975 | 34.64 | 0.944 | 37.05 | 0.977 | 29.50 | 0.869 | 35.10 | 0.989 | 39.05 | 0.983 |
kodim04 | 33.30 | 0.971 | 34.34 | 0.939 | 32.33 | 0.957 | 29.36 | 0.857 | 35.31 | 0.988 | 37.05 | 0.972 |
kodim05 | 26.01 | 0.949 | 28.34 | 0.905 | 29.98 | 0.950 | 22.45 | 0.742 | 29.08 | 0.981 | 31.93 | 0.967 |
kodim06 | 29.81 | 0.958 | 32.80 | 0.946 | 34.92 | 0.976 | 27.20 | 0.849 | 31.92 | 0.981 | 35.67 | 0.979 |
kodim07 | 32.52 | 0.981 | 34.00 | 0.952 | 35.59 | 0.975 | 27.78 | 0.847 | 34.19 | 0.992 | 37.65 | 0.984 |
kodim08 | 26.74 | 0.963 | 29.74 | 0.933 | 28.07 | 0.939 | 23.06 | 0.806 | 30.00 | 0.986 | 30.84 | 0.965 |
kodim09 | 33.55 | 0.981 | 35.66 | 0.958 | 32.21 | 0.966 | 29.95 | 0.892 | 35.33 | 0.992 | 37.11 | 0.978 |
kodim10 | 32.66 | 0.976 | 34.80 | 0.950 | 31.90 | 0.963 | 29.48 | 0.877 | 34.70 | 0.992 | 36.89 | 0.978 |
kodim11 | 30.31 | 0.965 | 32.65 | 0.940 | 33.94 | 0.967 | 27.90 | 0.858 | 32.56 | 0.984 | 35.38 | 0.974 |
kodim12 | 34.21 | 0.975 | 36.19 | 0.956 | 36.60 | 0.975 | 31.62 | 0.896 | 35.23 | 0.987 | 38.67 | 0.981 |
kodim13 | 24.86 | 0.927 | 27.91 | 0.908 | 30.02 | 0.949 | 22.47 | 0.763 | 27.71 | 0.968 | 30.62 | 0.957 |
kodim14 | 28.53 | 0.956 | 29.60 | 0.910 | 31.71 | 0.956 | 25.11 | 0.793 | 30.47 | 0.979 | 33.35 | 0.967 |
kodim15 | 32.43 | 0.972 | 33.83 | 0.936 | 33.08 | 0.953 | 28.65 | 0.864 | 34.65 | 0.989 | 35.96 | 0.970 |
kodim16 | 33.97 | 0.973 | 36.84 | 0.964 | 39.39 | 0.983 | 30.89 | 0.887 | 34.89 | 0.988 | 39.95 | 0.985 |
kodim17 | 32.23 | 0.975 | 34.58 | 0.953 | 36.06 | 0.975 | 28.69 | 0.858 | 36.43 | 0.993 | 37.34 | 0.981 |
kodim18 | 28.04 | 0.951 | 29.99 | 0.908 | 30.89 | 0.944 | 25.50 | 0.788 | 31.29 | 0.981 | 32.47 | 0.961 |
kodim19 | 31.68 | 0.971 | 34.17 | 0.949 | 32.50 | 0.960 | 28.50 | 0.861 | 35.21 | 0.988 | 35.11 | 0.972 |
kodim20 | 31.51 | 0.975 | 33.64 | 0.950 | 34.72 | 0.971 | 28.64 | 0.884 | 33.95 | 0.991 | 36.13 | 0.977 |
kodim21 | 29.71 | 0.971 | 32.41 | 0.943 | 34.52 | 0.972 | 26.70 | 0.856 | 31.95 | 0.987 | 35.34 | 0.976 |
kodim22 | 31.31 | 0.963 | 32.87 | 0.931 | 32.91 | 0.948 | 28.38 | 0.839 | 33.10 | 0.981 | 34.56 | 0.963 |
kodim23 | 33.35 | 0.985 | 33.47 | 0.960 | 33.72 | 0.964 | 29.21 | 0.873 | 34.46 | 0.992 | 37.96 | 0.978 |
kodim24 | 27.10 | 0.951 | 29.10 | 0.908 | 30.47 | 0.945 | 24.75 | 0.799 | 30.31 | 0.984 | 31.45 | 0.959 |
Test Images | FaLRTC [4] | LRTC-TNN1 [5] | LRTC-TNN2 [5] | TCTF [6] | LRTV-TTr1 [7] | SLRTC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
kodim01 | 25.42 | 0.876 | 26.84 | 0.819 | 26.98 | 0.857 | 22.92 | 0.699 | 27.20 | 0.932 | 28.29 | 0.886 |
kodim02 | 30.24 | 0.919 | 30.46 | 0.848 | 31.00 | 0.894 | 28.80 | 0.796 | 31.67 | 0.950 | 32.60 | 0.913 |
kodim03 | 29.69 | 0.924 | 29.48 | 0.841 | 31.63 | 0.922 | 27.48 | 0.772 | 31.11 | 0.963 | 33.59 | 0.942 |
kodim04 | 29.05 | 0.910 | 29.12 | 0.822 | 29.37 | 0.884 | 26.11 | 0.738 | 31.18 | 0.956 | 31.66 | 0.911 |
kodim05 | 21.80 | 0.827 | 22.67 | 0.711 | 24.59 | 0.832 | 19.41 | 0.538 | 24.48 | 0.925 | 26.14 | 0.874 |
kodim06 | 26.09 | 0.871 | 27.48 | 0.828 | 29.78 | 0.921 | 23.19 | 0.694 | 27.74 | 0.927 | 30.24 | 0.924 |
kodim07 | 27.85 | 0.927 | 28.35 | 0.849 | 29.93 | 0.913 | 24.71 | 0.726 | 30.07 | 0.971 | 31.86 | 0.939 |
kodim08 | 22.47 | 0.881 | 23.88 | 0.791 | 22.93 | 0.815 | 20.18 | 0.664 | 25.12 | 0.946 | 24.89 | 0.867 |
kodim09 | 28.99 | 0.936 | 29.96 | 0.874 | 28.71 | 0.905 | 25.61 | 0.786 | 31.08 | 0.971 | 31.34 | 0.927 |
kodim10 | 28.65 | 0.923 | 29.42 | 0.850 | 28.82 | 0.902 | 25.59 | 0.759 | 30.94 | 0.971 | 31.52 | 0.928 |
kodim11 | 26.56 | 0.897 | 27.38 | 0.822 | 28.71 | 0.893 | 23.70 | 0.714 | 28.43 | 0.942 | 29.74 | 0.906 |
kodim12 | 30.14 | 0.926 | 30.89 | 0.872 | 31.34 | 0.925 | 27.37 | 0.785 | 31.66 | 0.957 | 33.03 | 0.935 |
kodim13 | 21.49 | 0.791 | 22.78 | 0.722 | 25.04 | 0.837 | 18.82 | 0.550 | 23.54 | 0.886 | 25.45 | 0.852 |
kodim14 | 24.57 | 0.856 | 24.59 | 0.740 | 26.69 | 0.859 | 22.42 | 0.623 | 26.34 | 0.924 | 28.02 | 0.883 |
kodim15 | 28.28 | 0.917 | 28.58 | 0.823 | 28.15 | 0.865 | 26.14 | 0.761 | 30.47 | 0.963 | 30.58 | 0.905 |
kodim16 | 30.00 | 0.913 | 31.25 | 0.875 | 34.03 | 0.942 | 26.38 | 0.743 | 31.09 | 0.950 | 34.35 | 0.945 |
kodim17 | 28.11 | 0.914 | 29.24 | 0.853 | 30.85 | 0.915 | 24.33 | 0.718 | 31.67 | 0.972 | 32.17 | 0.936 |
kodim18 | 24.42 | 0.850 | 25.06 | 0.743 | 26.26 | 0.834 | 21.35 | 0.598 | 27.02 | 0.932 | 27.63 | 0.873 |
kodim19 | 27.50 | 0.910 | 28.61 | 0.841 | 27.26 | 0.877 | 24.81 | 0.736 | 30.32 | 0.958 | 29.18 | 0.904 |
kodim20 | 27.40 | 0.925 | 28.34 | 0.857 | 29.92 | 0.919 | 24.76 | 0.777 | 29.85 | 0.970 | 31.26 | 0.932 |
kodim21 | 25.64 | 0.905 | 26.89 | 0.831 | 29.23 | 0.914 | 22.64 | 0.715 | 27.68 | 0.952 | 29.83 | 0.920 |
kodim22 | 27.55 | 0.887 | 27.99 | 0.803 | 28.36 | 0.853 | 25.09 | 0.694 | 29.23 | 0.935 | 29.72 | 0.883 |
kodim23 | 29.09 | 0.951 | 28.94 | 0.880 | 29.14 | 0.898 | 26.94 | 0.817 | 30.89 | 0.976 | 32.33 | 0.932 |
kodim24 | 23.61 | 0.857 | 24.47 | 0.752 | 26.00 | 0.840 | 21.21 | 0.607 | 26.23 | 0.941 | 26.84 | 0.869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Tang, G. Color Image Restoration Using Sub-Image Based Low-Rank Tensor Completion. Sensors 2023, 23, 1706. https://doi.org/10.3390/s23031706
Liu X, Tang G. Color Image Restoration Using Sub-Image Based Low-Rank Tensor Completion. Sensors. 2023; 23(3):1706. https://doi.org/10.3390/s23031706
Chicago/Turabian StyleLiu, Xiaohua, and Guijin Tang. 2023. "Color Image Restoration Using Sub-Image Based Low-Rank Tensor Completion" Sensors 23, no. 3: 1706. https://doi.org/10.3390/s23031706
APA StyleLiu, X., & Tang, G. (2023). Color Image Restoration Using Sub-Image Based Low-Rank Tensor Completion. Sensors, 23(3), 1706. https://doi.org/10.3390/s23031706