Practical Considerations for Using the NeoSpectra-Scanner Handheld Near-Infrared Reflectance Spectrometer to Predict the Nutritive Value of Undried Ensiled Forage
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Constituents | Inst. | Preprocessing | LVs | RMSECV | RMSEP | R2CV |
---|---|---|---|---|---|---|
NDF | A-1 | MC, D-2,2,15 | 7 | 4.90 | 4.87 | 0.76 |
A-2 | MC, D-2,2,15 | 8 | 4.78 | 4.49 | 0.77 | |
A-3 | D-2,2,15 | 7 | 5.52 | 4.83 | 0.70 | |
B-1 | MC, D-2,2,15 | 8 | 3.70 | 3.89 | 0.86 | |
B-2 | MC, D-2,2,15 | 7 | 4.19 | 4.06 | 0.83 | |
B-3 | MSC, D-2,2,15 | 8 | 4.13 | 3.93 | 0.83 | |
IVTD | A-1 | MC, D-2,2,15 | 6 | 3.39 | 3.31 | 0.51 |
A-2 | MC, D-1,2,15 | 7 | 3.41 | 3.38 | 0.50 | |
A-3 | MC, D-2,2,15 | 6 | 3.50 | 3.45 | 0.48 | |
B-1 | MC, D-1,1,15 | 7 | 3.32 | 3.18 | 0.53 | |
B-2 | MSC, D-2,2,15 | 7 | 3.18 | 2.72 | 0.57 | |
B-3 | MC, D-1,1,15 | 7 | 3.31 | 2.77 | 0.53 | |
NDFD | A-1 | MSC, D-2,2,15 | 6 | 6.18 | 5.79 | 0.32 |
A-2 | MC, D-1,2,15 | 7 | 6.41 | 6.00 | 0.27 | |
A-3 | MC, D-2,2,15 | 6 | 6.23 | 6.37 | 0.32 | |
B-1 | MC, D-2,2,15 | 8 | 5.43 | 4.79 | 0.48 | |
B-2 | MC, D-2,2,15 | 8 | 5.76 | 5.38 | 0.42 | |
B-3 | MC, D-2,2,15 | 7 | 5.49 | 5.43 | 0.47 | |
ADL | A-1 | MSC, D-2,2,15 | 7 | 1.32 | 1.25 | 0.74 |
A-2 | MSC, D-2,2,15 | 8 | 1.29 | 1.15 | 0.75 | |
A-3 | MSC, D-2,2,15 | 7 | 1.36 | 1.10 | 0.72 | |
B-1 | D-1,2,15 | 7 | 1.15 | 0.97 | 0.80 | |
B-2 | MSC, D-2,2,15 | 7 | 1.19 | 1.08 | 0.79 | |
B-3 | MC, D-2,2,15 | 6 | 1.19 | 0.97 | 0.79 | |
ADF | A-1 | MC, D-2,2,15 | 6 | 3.91 | 4.08 | 0.79 |
A-2 | MSC, D-2,2,15 | 8 | 3.55 | 3.47 | 0.82 | |
A-3 | D-2,2,15 | 7 | 4.23 | 3.80 | 0.75 | |
B-1 | MC, D-2,2,15 | 7 | 3.00 | 2.89 | 0.87 | |
B-2 | MC, D-2,2,15 | 7 | 3.39 | 3.25 | 0.84 | |
B-3 | MC, D-2,2,15 | 8 | 3.18 | 3.03 | 0.86 | |
Ash | A-1 | MC, D-1,2,15 | 6 | 1.82 | 1.49 | 0.81 |
A-2 | D-1,2,15 | 6 | 1.91 | 1.53 | 0.79 | |
A-3 | MC, D-1,1,15 | 9 | 1.78 | 1.47 | 0.82 | |
B-1 | MC, D-1,1,15 | 7 | 1.52 | 1.30 | 0.87 | |
B-2 | MC, D-1,1,15 | 8 | 1.60 | 1.33 | 0.85 | |
B-3 | MC, D-1,2,15 | 8 | 1.55 | 1.17 | 0.86 | |
CP | A-1 | D-1,1,15 | 6 | 2.03 | 1.99 | 0.89 |
A-2 | D-1,1,15 | 8 | 1.93 | 1.77 | 0.90 | |
A-3 | MC, D-1,1,15 | 9 | 2.03 | 1.86 | 0.89 | |
B-1 | MC, D-1,2,15 | 7 | 1.57 | 1.62 | 0.94 | |
B-2 | MC, D-1,2,15 | 8 | 1.68 | 1.55 | 0.93 | |
B-3 | D-1,1,15 | 6 | 1.66 | 1.63 | 0.93 | |
MO | A-1 | MSC, D-1,2,15 | 6 | 2.15 | 2.00 | 0.94 |
A-2 | MSC, D-1,2,15 | 6 | 2.16 | 1.76 | 0.94 | |
A-3 | MSC, D-2,2,15 | 6 | 2.08 | 1.87 | 0.94 | |
B-1 | MC, D-1,1,15 | 5 | 1.73 | 1.40 | 0.96 | |
B-2 | MSC, D-1,1,15 | 7 | 1.68 | 1.32 | 0.96 | |
B-3 | D-1,1,15 | 5 | 1.81 | 1.33 | 0.96 |
Appendix B
Calibration | V1 | V2 | LVs | RMSECV | RMSEP | R2CV | Avg RMSEP | p-Value | |
---|---|---|---|---|---|---|---|---|---|
NDF | 1&3 | 2 | 6 | 3.99 | 4.14 | 0.84 | 4.08 | 0.351 | |
1&2 | 3 | 5 | 4.15 | 4.09 | 0.83 | ||||
2&3 | 1 | 5 | 4.14 | 4.02 | 0.83 | ||||
1&3 | 6 | 3.86 | 3.88 | 0.85 | 4.05 | ||||
1&2 | 5 | 4.12 | 4.12 | 0.83 | |||||
2&3 | 5 | 4.14 | 4.14 | 0.83 | |||||
IVTD | 1&3 | 2 | 9 | 3.31 | 4.69 | 0.53 | 5.30 | 0.065 | |
1&2 | 3 | 8 | 3.26 | 3.58 | 0.55 | ||||
2&3 | 1 | 9 | 3.22 | 7.63 | 0.56 | ||||
1&3 | 9 | 3.31 | 3.09 | 0.53 | 2.99 | ||||
1&2 | 8 | 3.26 | 3.05 | 0.55 | |||||
2&3 | 9 | 3.22 | 2.84 | 0.56 | |||||
NDFD | 1&3 | 2 | 5 | 6.36 | 6.72 | 0.28 | 7.21 | 0.024 | |
1&2 | 3 | 8 | 6.79 | 6.76 | 0.25 | ||||
2&3 | 1 | 6 | 7.16 | 8.15 | 0.14 | ||||
1&3 | 5 | 6.25 | 6.08 | 0.31 | 5.73 | ||||
1&2 | 8 | 5.67 | 5.26 | 0.43 | |||||
2&3 | 6 | 6.16 | 5.83 | 0.33 | |||||
ADL | 1&3 | 2 | 8 | 1.10 | 1.14 | 0.82 | 1.18 | 0.035 | |
1&2 | 3 | 6 | 1.19 | 1.24 | 0.79 | ||||
2&3 | 1 | 6 | 1.22 | 1.17 | 0.78 | ||||
1&3 | 8 | 1.09 | 0.93 | 0.82 | 1.03 | ||||
1&2 | 6 | 1.19 | 1.08 | 0.79 | |||||
2&3 | 6 | 1.23 | 1.09 | 0.78 | |||||
ADF | 1&3 | 2 | 6 | 3.07 | 3.46 | 0.87 | 3.31 | 0.085 | |
1&2 | 3 | 6 | 3.21 | 3.30 | 0.86 | ||||
2&3 | 1 | 6 | 3.17 | 3.16 | 0.86 | ||||
1&3 | 6 | 3.07 | 3.01 | 0.87 | 3.13 | ||||
1&2 | 6 | 3.21 | 3.23 | 0.86 | |||||
2&3 | 6 | 3.17 | 3.14 | 0.86 | |||||
Ash | 1&3 | 2 | 5 | 1.70 | 2.07 | 0.83 | 3.06 | 0.096 | |
1&2 | 3 | 4 | 1.79 | 2.08 | 0.82 | ||||
2&3 | 1 | 6 | 1.97 | 5.03 | 0.78 | ||||
1&3 | 5 | 1.70 | 1.50 | 0.83 | 1.52 | ||||
1&2 | 4 | 1.79 | 1.53 | 0.82 | |||||
2&3 | 6 | 1.71 | 1.52 | 0.83 | |||||
CP | 1&3 | 2 | 8 | 1.84 | 2.68 | 0.91 | 2.18 | 0.103 | |
1&2 | 3 | 8 | 1.69 | 1.90 | 0.93 | ||||
2&3 | 1 | 7 | 1.98 | 1.95 | 0.90 | ||||
1&3 | 8 | 1.68 | 1.83 | 0.93 | 1.78 | ||||
1&2 | 8 | 1.69 | 1.65 | 0.93 | |||||
2&3 | 7 | 1.80 | 1.87 | 0.92 | |||||
MO | 1&3 | 2 | 7 | 1.60 | 3.00 | 0.97 | 2.39 | 0.018 | |
1&2 | 3 | 8 | 2.02 | 2.06 | 0.95 | ||||
2&3 | 1 | 7 | 2.00 | 2.10 | 0.95 | ||||
1&3 | 7 | 1.60 | 1.43 | 0.97 | 1.44 | ||||
1&2 | 8 | 1.62 | 1.42 | 0.96 | |||||
2&3 | 7 | 1.64 | 1.47 | 0.96 |
References
- St-Pierre, N.R.; Weiss, W.P. Partitioning Variation in Nutrient Composition Data of Common Feeds and Mixed Diets on Commercial Dairy Farms. J. Dairy Sci. 2015, 98, 5004–5015. [Google Scholar] [CrossRef] [PubMed]
- Turiello, P.; Larriestra, A.; Bargo, F.; Relling, A.; Weiss, W. Sources of Variation in Corn Silage and Total Mixed Rations of Commercial Dairy Farms. Prof. Anim. Sci. 2018, 34, 148–155. [Google Scholar] [CrossRef]
- Cherney, D.J.R.; Digman, M.; Cherney, J.H. Day-to-Day Variation in Forage and Mixed Diets in Commercial Dairy Farms in New York. Appl. Anim. Sci. 2021, 37, 11–20. [Google Scholar] [CrossRef]
- Yoder, P.S.; St-Pierre, N.R.; Daniels, K.M.; O’Diam, K.M.; Weiss, W.P. Effects of Short-Term Variation in Forage Quality and Forage to Concentrate Ratio on Lactating Dairy Cows. J. Dairy Sci. 2013, 96, 6596–6609. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Norris, K. Near-Infrared Technology: In the Agricultural and Food Industries, 2nd ed.; Amer Assn of Cereal Chemists: Eagan, Minnesota, 2001; ISBN 9781891127243. [Google Scholar]
- Beć, K.B.; Grabska, J.; Siesler, H.W.; Huck, C.W. Handheld Near-Infrared Spectrometers: Where Are We Heading? NIR News 2020, 31, 28–35. [Google Scholar] [CrossRef]
- Fernández Pierna, J.A.; Vermeulen, P.; Lecler, B.; Baeten, V.; Dardenne, P. Calibration Transfer from Dispersive Instruments to Handheld Spectrometers. Appl. Spectrosc. 2010, 64, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.J.; Castillo, M.S.; Hodge, G.R. Comparison of Benchtop and Handheld Near-infrared Spectroscopy Devices to Determine Forage Nutritive Value. Crop Sci. 2020, 60, 3410–3422. [Google Scholar] [CrossRef]
- Berzaghi, P.; Cherney, J.H.; Casler, M.D. Prediction Performance of Portable near Infrared Reflectance Instruments Using Preprocessed Dried, Ground Forage Samples. Comput. Electron. Agric. 2021, 182, 106013. [Google Scholar] [CrossRef]
- Digman, M.F.; Cherney, J.H.; Cherney, D.J.R. The Relative Performance of a Benchtop Scanning Monochromator and Handheld Fourier Transform Near-Infrared Reflectance Spectrometer in Predicting Forage Nutritive Value. Sensors 2022, 22, 658. [Google Scholar] [CrossRef] [PubMed]
- Valentine, M.E.; Karayilanli, E.; Cherney, J.H.; Cherney, D.J. Comparison of in Vitro Long Digestion Methods and Digestion Rates for Diverse Forages. Crop Sci. 2019, 59, 422–435. [Google Scholar] [CrossRef]
- Cherney, J.H.; Digman, M.F.; Cherney, D.J. Handheld NIRS for Forage Evaluation. Comput. Electron. Agric. 2021, 190, 106469. [Google Scholar] [CrossRef]
- Williams, P. The RPD Statistic: A Tutorial Note. NIR News 2014, 25, 22–26. [Google Scholar] [CrossRef]
- Rukundo, I.R.; Danao, M.-G.C.; Mitchell, R.B.; Masterson, S.D.; Weller, C.L. Comparing the Use of Handheld and Benchtop NIR Spectrometers in Predicting Nutritional Value of Forage. Appl. Eng. Agric. 2021, 37, 171–181. [Google Scholar] [CrossRef]
Constituent | Crop | N | Mean | SD | Range |
---|---|---|---|---|---|
MO (%w.b.) | A | 27 | 60.8 | 8.7 | 39.5–75.5 |
G | 92 | 60.2 | 11.6 | 28.5–77.6 | |
AG | 176 | 62.0 | 9.2 | 26.3–81.7 | |
C | 259 | 62.4 | 6.4 | 29.9–82.2 | |
Ash (%DM) | A | 27 | 11.6 | 1.7 | 8.5–14.9 |
G | 92 | 9.6 | 2.3 | 5.3–19.9 | |
AG | 176 | 11.0 | 2.1 | 3.1–21.7 | |
C | 259 | 3.0 | 0.56 | 0.7–4.5 | |
CP (%DM) | A | 27 | 21.8 | 2.2 | 18.2–27.1 |
G | 92 | 15.3 | 3.5 | 8.8–23.0 | |
AG | 176 | 19.9 | 3.2 | 10.2–27.5 | |
C | 259 | 7.7 | 0.79 | 4.0–10.3 | |
NDF (%DM) | A | 27 | 39.9 | 4.0 | 32.6–49.1 |
G | 92 | 55.5 | 8.0 | 41.9–72.0 | |
AG | 176 | 45.5 | 7.3 | 28.8–70.7 | |
C | 259 | 34.1 | 4.6 | 25.4–57.4 | |
NDFD (%DM) | A | 27 | 55.4 | 7.7 | 44.6–72.5 |
G | 92 | 65.7 | 9.3 | 44.1–83.1 | |
AG | 176 | 64.7 | 8.3 | 46.3–83.3 | |
C | 259 | 59.9 | 4.7 | 44.2–78.2 | |
IVTD (%DM) | A | 27 | 83.1 | 4.1 | 73.0–89.5 |
G | 92 | 82.6 | 7.1 | 68.9–92.9 | |
AG | 176 | 87.6 | 3.8 | 66.3–94.8 | |
C | 259 | 88.4 | 3.1 | 77.8–94.9 | |
ADL (%DM) | A | 27 | 7.7 | 1.6 | 4.7–11.3 |
G | 92 | 6.4 | 2.1 | 2.6–15.9 | |
AG | 176 | 6.6 | 1.6 | 3.2–12.2 | |
C | 259 | 2.2 | 0.45 | 1.2–3.5 | |
ADF (%DM) | A | 27 | 34.7 | 3.6 | 29.8–43.5 |
G | 92 | 36.9 | 5.5 | 27.5–48.4 | |
AG | 176 | 34.5 | 5.1 | 21.5–50.1 | |
C | 259 | 20.6 | 2.9 | 15.3–33.9 |
Scanning Method | RMSEP | p Value | |
---|---|---|---|
A | B | ||
NDF | 4.7 | 4.0 | 0.004 |
IVTD | 3.4 | 2.9 | 0.032 |
NDFD | 6.1 | 5.2 | 0.033 |
ADL | 1.2 | 1.0 | 0.051 |
ADF | 3.8 | 3.1 | 0.025 |
Ash | 1.5 | 1.3 | 0.012 |
CP | 1.9 | 1.6 | 0.017 |
MO | 1.9 | 1.4 | 0.002 |
Constituent | RMSECV | R2CV | RMSEP | p Value | |
---|---|---|---|---|---|
V1 | V2 | ||||
NDF | 4.06 | 0.84 | 4.05 | 4.08 | 0.351 |
IVTD | 3.26 | 0.55 | 2.99 | 5.30 | 0.065 |
NDFD | 6.40 | 0.29 | 5.73 | 7.21 | 0.024 |
ADL | 1.17 | 0.79 | 1.03 | 1.18 | 0.035 |
ADF | 3.15 | 0.84 | 3.13 | 3.31 | 0.085 |
Ash | 1.78 | 0.82 | 1.52 | 3.06 | 0.096 |
CP | 1.78 | 0.92 | 1.78 | 2.18 | 0.103 |
MO | 1.75 | 0.96 | 1.44 | 2.39 | 0.018 |
Constituents | Crop | RMSECV | RMSEP | R2CV |
---|---|---|---|---|
NDF | C | 3.17 | 3.22 | 0.52 |
AGall | 3.97 | 4.18 | 0.81 | |
IVTD | C | 2.25 | 2.21 | 0.44 |
AGall | 3.67 | 3.86 | 0.58 | |
NDFD | C | 4.48 | 4.55 | 0.08 |
AGall | 6.04 | 6.14 | 0.56 | |
ADL | C | 0.40 | 0.38 | 0.21 |
AGall | 1.29 | 1.10 | 0.52 | |
ADF | C | 2.11 | 2.07 | 0.45 |
AGall | 2.69 | 2.75 | 0.74 | |
Ash | C | 0.51 | 0.50 | 0.20 |
AGall | 1.93 | 1.42 | 0.33 | |
CP | C | 0.58 | 0.51 | 0.48 |
AGall | 2.27 | 2.71 | 0.67 | |
MO | C | 1.68 | 1.62 | 0.93 |
AGall | 1.78 | 1.67 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Cherney, J.H.; Cherney, D.J.R.; Digman, M.F. Practical Considerations for Using the NeoSpectra-Scanner Handheld Near-Infrared Reflectance Spectrometer to Predict the Nutritive Value of Undried Ensiled Forage. Sensors 2023, 23, 1750. https://doi.org/10.3390/s23041750
Feng X, Cherney JH, Cherney DJR, Digman MF. Practical Considerations for Using the NeoSpectra-Scanner Handheld Near-Infrared Reflectance Spectrometer to Predict the Nutritive Value of Undried Ensiled Forage. Sensors. 2023; 23(4):1750. https://doi.org/10.3390/s23041750
Chicago/Turabian StyleFeng, Xiaoyu, Jerry H. Cherney, Debbie J. R. Cherney, and Matthew F. Digman. 2023. "Practical Considerations for Using the NeoSpectra-Scanner Handheld Near-Infrared Reflectance Spectrometer to Predict the Nutritive Value of Undried Ensiled Forage" Sensors 23, no. 4: 1750. https://doi.org/10.3390/s23041750
APA StyleFeng, X., Cherney, J. H., Cherney, D. J. R., & Digman, M. F. (2023). Practical Considerations for Using the NeoSpectra-Scanner Handheld Near-Infrared Reflectance Spectrometer to Predict the Nutritive Value of Undried Ensiled Forage. Sensors, 23(4), 1750. https://doi.org/10.3390/s23041750