A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Image Preprocessing
2.3. Densenet for Gmdms Feature Learning
2.4. Population Graph Construction
- Experiment 1: Demographic information-based population graph for AD versus CN classification
- Experiment 2: Neuropsychological assessments-based on the population graph for MCI classification
- Experiment 3: Population graph for multi-class classification
2.5. GCN
2.6. Evaluation Metrics
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
3.4. Graph Features versus Vector Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsiao, Y.-H.; Chang, C.-H.; Gean, P.-W. Impact of Social Relationships on Alzheimer’s Memory Impairment: Mechanistic Studies. J. Biomed. Sci. 2018, 25, 3. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, M.; Rinaldi, C.; Santoro, G.; Crisafulli, C. The Biological Pathways of Alzheimer Disease: A Review. AIMS Neurosci. 2021, 8, 86–132. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Mirzaei, F.; Potashman, M.; Ikram, M.A.; Maserejian, N. The Incidence of Mild Cognitive Impairment: A Systematic Review and Data Synthesis. Alzheimers Dement. 2019, 11, 248–256. [Google Scholar] [CrossRef]
- Fathi, S.; Ahmadi, M.; Dehnad, A. Early Diagnosis of Alzheimer’s Disease Based on Deep Learning: A Systematic Review. Comput. Biol. Med. 2022, 146, 105634. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Lin, L.; Zhang, B.; Shen, X.; Wu, S. Alzheimer’s Disease Neuroimaging Initiative Multi-Model and Multi-Slice Ensemble Learning Architecture Based on 2D Convolutional Neural Networks for Alzheimer’s Disease Diagnosis. Comput. Biol. Med. 2021, 136, 104678. [Google Scholar] [CrossRef]
- Liu, M.; Li, F.; Yan, H.; Wang, K.; Ma, Y.; Shen, L.; Xu, M.; Alzheimer’s Disease Neuroimaging Initiative. A Multi-Model Deep Convolutional Neural Network for Automatic Hippocampus Segmentation and Classification in Alzheimer’s Disease. Neuroimage 2020, 208, 116459. [Google Scholar] [CrossRef]
- Meszlényi, R.J.; Buza, K.; Vidnyánszky, Z. Resting State FMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture. Front. Neuroinform. 2017, 11, 61. [Google Scholar] [CrossRef]
- Song, T.-A.; Roy Chowdhury, S.; Yang, F.; Jacobs, H.; El Fakhri, G.; Li, Q.; Johnson, K.; Dutta, J. Graph convolutional neural networks for alzheimer’s disease classification. Proc. IEEE Int. Symp. Biomed. Imaging 2019, 2019, 414–417. [Google Scholar] [CrossRef]
- Kazi, A.; Krishna, S.A.; Shekarforoush, S.; Kortuem, K.; Navab, N. Self-Attention Equipped Graph Convolutions for Disease Prediction. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI), Venice, Italy, 8–11 April 2019. [Google Scholar] [CrossRef]
- Yu, S.; Yue, G.; Elazab, A.; Song, X.; Wang, T.; Lei, B. Multi-Scale Graph Convolutional Network for Mild Cognitive Impairment Detection. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; International Workshop on Graph Learning in Medical Imaging, Shenzhen, China, 17 October 2019; pp. 79–87. [Google Scholar] [CrossRef]
- Jiang, H.; Cao, P.; Xu, M.; Yang, J.; Zaiane, O. Hi-GCN: A Hierarchical Graph Convolution Network for Graph Embedding Learning of Brain Network and Brain Disorders Prediction. Comput. Biol. Med. 2020, 127, 104096. [Google Scholar] [CrossRef]
- Zhao, F.; Li, N.; Pan, H.; Chen, X.; Li, Y.; Zhang, H.; Mao, N.; Cheng, D. Multi-View Feature Enhancement Based on Self-Attention Mechanism Graph Convolutional Network for Autism Spectrum Disorder Diagnosis. Front. Hum. Neurosci. 2022, 16, 918969. [Google Scholar] [CrossRef]
- Zeng, D.; Zhao, C.; Quan, Z. CID-GCN: An Effective Graph Convolutional Networks for Chemical-Induced Disease Relation Extraction. Front. Genet. 2021, 12, 624307. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Huang, R.; Zheng, L.; Chen, Y.; Qin, Y. Structure Enhanced Deep Clustering Network via a Weighted Neighbourhood Auto-Encoder. Neural. Netw. 2022, 155, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Crane, P.K.; Carle, A.; Gibbons, L.E.; Insel, P.; Mackin, R.S.; Gross, A.; Jones, R.N.; Mukherjee, S.; Curtis, S.M.; Harvey, D.; et al. Development and Assessment of a Composite Score for Memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav. 2012, 6, 502–516. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, L.E.; Carle, A.C.; Mackin, R.S.; Harvey, D.; Mukherjee, S.; Insel, P.; Curtis, S.M.; Mungas, D.; Crane, P.K. Alzheimer’s Disease Neuroimaging Initiative A Composite Score for Executive Functioning, Validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) Participants with Baseline Mild Cognitive Impairment. Brain Imaging Behav. 2012, 6, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-E.; Mukherjee, S.; Gibbons, L.E.; Sanders, R.E.; Jones, R.N.; Tommet, D.; Mez, J.; Trittschuh, E.H.; Saykin, A.; Lamar, M.; et al. Development and Validation of Language and Visuospatial Composite Scores in ADNI. Alzheimers Dement. 2020, 6, e12072. [Google Scholar] [CrossRef]
- Ashburner, J. Computational Anatomy with the SPM Software. Magn. Reson. Imaging 2009, 27, 1163–1174. [Google Scholar] [CrossRef]
- Evans, A.C.; Collins, D.L.; Mills, S.R.; Brown, E.D.; Peters, T.M. 3D Statistical Neuroanatomical Models from 305 MRI Volumes. In Proceedings of the Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Laurens, V.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Lin, L.; Wu, S. A Review of Brain Atrophy Subtypes Definition and Analysis for Alzheimer’s Disease Heterogeneity Studies. J. Alzheimers Dis. 2021, 80, 1339–1352. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, L.; Wu, S.; Al-Masqari, Z.H.M.A. Multiple Subtypes of Alzheimer’s Disease Base on Brain Atrophy Pattern. Brain Sci. 2021, 11, 278. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, L.; Liu, L.; Shen, X.; Wu, S. Concordance of Alzheimer’s Disease Subtypes Produced from Different Representative Morphological Measures: A Comparative Study. Brain Sci. 2022, 12, 187. [Google Scholar] [CrossRef]
- Alzheimer’s Association 2011 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2011, 7, 208–244. [CrossRef]
- Lin, L.; Fu, Z.; Xu, X.; Wu, S. Mouse Brain Magnetic Resonance Microscopy: Applications in Alzheimer Disease. Microsc. Res. Tech. 2015, 78, 416–424. [Google Scholar] [CrossRef]
- Arnold, M.; Nho, K.; Kueider-Paisley, A.; Massaro, T.; Huynh, K.; Brauner, B.; MahmoudianDehkordi, S.; Louie, G.; Moseley, M.A.; Thompson, J.W.; et al. Sex and APOE Ε4 Genotype Modify the Alzheimer’s Disease Serum Metabolome. Nat. Commun. 2020, 11, 1148. [Google Scholar] [CrossRef]
- Prince, M.; Ali, G.-C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y.-T. Recent Global Trends in the Prevalence and Incidence of Dementia, and Survival with Dementia. Alzheimers Res. Ther. 2016, 8, 23. [Google Scholar] [CrossRef]
- Nebel, R.A.; Aggarwal, N.T.; Barnes, L.L.; Gallagher, A.; Goldstein, J.M.; Kantarci, K.; Mallampalli, M.P.; Mormino, E.C.; Scott, L.; Yu, W.H.; et al. Understanding the Impact of Sex and Gender in Alzheimer’s Disease: A Call to Action. Alzheimers Dement. 2018, 14, 1171–1183. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Wang, Y.; Kim, Y. Applied Machine Learning in Alzheimer’s Disease Research: Omics, Imaging, and Clinical Data. Emerg. Top. Life Sci. 2021, 5, 765–777. [Google Scholar] [CrossRef]
- Petersen, R.C.; Aisen, P.S.; Beckett, L.A.; Donohue, M.C.; Gamst, A.C.; Harvey, D.J.; Jack, C.R.; Jagust, W.J.; Shaw, L.M.; Toga, A.W.; et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical Characterization. Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar] [CrossRef]
- Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of Age, Sex, and Ethnicity on the Association between Apolipoprotein E Genotype and Alzheimer Disease. A Meta-Analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997, 278, 1349–1356. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Y.; Dai, X.; Fang, W.; Wu, X.; Chen, X. Metformin Treatment Improves the Spatial Memory of Aged Mice in an APOE Genotype-Dependent Manner. FASEB J. 2019, 33, 7748–7757. [Google Scholar] [CrossRef]
- Ghebremedhin, E.; Schultz, C.; Thal, D.R.; Rüb, U.; Ohm, T.G.; Braak, E.; Braak, H. Gender and Age Modify the Association between APOE and AD-Related Neuropathology. Neurology 2001, 56, 1696–1701. [Google Scholar] [CrossRef]
- Riedel, B.C.; Thompson, P.M.; Brinton, R.D. Age, APOE and Sex: Triad of Risk of Alzheimer’s Disease. J. Steroid Biochem. Mol. Biol. 2016, 160, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.S.; Desai, U.; Kirson, N.Y.; Zichlin, M.L.; Ball, D.E.; Matthews, B.R. Disease Severity and Minimal Clinically Important Differences in Clinical Outcome Assessments for Alzheimer’s Disease Clinical Trials. Alzheimers Dement. 2019, 5, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Coley, N.; Andrieu, S.; Jaros, M.; Weiner, M.; Cedarbaum, J.; Vellas, B. Suitability of the Clinical Dementia Rating-Sum of Boxes as a Single Primary Endpoint for Alzheimer’s Disease Trials. Alzheimers Dement. 2011, 7, 602–610.e2. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M.; Jaros, M.; Hernandez, C.; Coley, N.; Andrieu, S.; Grundman, M.; Vellas, B. Alzheimer’s Disease Neuroimaging Initiative Rationale for Use of the Clinical Dementia Rating Sum of Boxes as a Primary Outcome Measure for Alzheimer’s Disease Clinical Trials. Alzheimers Dement. 2013, 9, S45–S55. [Google Scholar] [CrossRef]
- Tufail, A.B.; Ullah, K.; Khan, R.A.; Shakir, M.; Khan, M.A.; Ullah, I.; Ma, Y.-K.; Ali, M.S. On Improved 3D-CNN-Based Binary and Multiclass Classification of Alzheimer’s Disease Using Neuroimaging Modalities and Data Augmentation Methods. J. Healthc. Eng. 2022, 2022, 1302170. [Google Scholar] [CrossRef]
- An, X.; Zhou, Y.; Di, Y.; Ming, D. Dynamic Functional Connectivity and Graph Convolution Network for Alzheimer’s Disease Classification. In Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering, Kyoto, Japan, 6–9 November 2020. [Google Scholar] [CrossRef]
- Li, L.; Jiang, H.; Wen, G.; Cao, P.; Xu, M.; Liu, X.; Yang, J.; Zaiane, O. TE-HI-GCN: An Ensemble of Transfer Hierarchical Graph Convolutional Networks for Disorder Diagnosis. Neuroinformatics 2022, 20, 353–375. [Google Scholar] [CrossRef]
- Li, W.; Zhao, J.; Shen, C.; Zhang, J.; Hu, J.; Xiao, M.; Zhang, J.; Chen, M. Regional Brain Fusion: Graph Convolutional Network for Alzheimer’s Disease Prediction and Analysis. Front. Neuroinform. 2022, 16, 886365. [Google Scholar] [CrossRef]
Characteristic | AD | MCI | CN | p-Values |
---|---|---|---|---|
Age | 75.3 ± 7.5 | 74.7 ± 7.5 | 75.9 ± 5.0 | p = 0.145 |
Gender (Male/Female) | 98/89 | 245/137 | 119/110 | <0.01 ABD |
ApoE4(0/1/2) | 64/87/36 | 171/161/43 | 168/56/5 | <0.01 ABCD |
MMSE | 23.3 ± 2.0 | 27.3 ± 1.8 | 29.1 ± 1.0 | <0.01 ABC |
CDR-SB | 4.4 ± 1.6 | 1.6 ± 0.9 | 0.0 ± 0.1 | <0.01 ABC |
ADAS-Cog11 | 19.7 ± 4.9 | 11.5 ± 4.4 | 6.2 ± 2.9 | <0.01 ABC |
ADAS-Cog13 | 30.3 ± 6.1 | 18.7 ± 6.2 | 9.5 ± 4.2 | <0.01 ABC |
FAQ | 13.2 ± 6.8 | 3.8 ± 4.4 | 0.1 ± 0.6 | <0.01 ABC |
ADNI-MEM | −0.9 ± 0.6 | −0.1 ± 0.6 | 1.0 ± 0.5 | <0.01 ABC |
ADNI-EF | −1.0 ± 0.9 | −0.1 ± 0.9 | 0.6 ± 0.7 | <0.01 ABC |
ADNI-LAN | −0.8 ± 0.9 | −0.1 ± 0.8 | 0.8 ± 0.7 | <0.01 ABC |
ADNI-VS | −0.6 ± 0.9 | −0.1 ± 0.8 | 0.2 ± 0.6 | <0.01 ABC |
Edge-Assigning Function | ACC (%) | PRE (%) | REC (%) | F1 (%) | MCC (%) |
---|---|---|---|---|---|
86.8 | 84.2 | 86.5 | 85.3 | 71.3 | |
(age) | 85.5 | 83.8 | 83.8 | 83.8 | 68.2 |
(gender) | 86.8 | 84.2 | 86.5 | 85.3 | 71.3 |
(ApoE) | 88.0 | 82.9 | 91.9 | 87.2 | 74.8 |
(age and gender) | 86.8 | 84.2 | 86.5 | 85.3 | 71.3 |
(age and ApoE) | 90.4 | 89.2 | 89.2 | 89.2 | 78.7 |
(gender and ApoE) | 89.2 | 88.9 | 86.5 | 87.7 | 75.8 |
(age, gender and ApoE) | 91.6 | 91.7 | 89.2 | 90.4 | 81.1 |
Classification Task | MMSE | CDR-SB | ADAS-Cog11 | ADAS-Cog13 | FAQ | ADNI-MEM | ADNI-EF | ADNI-LAN | ADNI-VS |
---|---|---|---|---|---|---|---|---|---|
AD versus MCI | 1 | 2 | 3 | 3 | 5 | 0.3 | 0.3 | 0.7 | 0.5 |
MCI versus CN | 2 | 1.5 | 5 | 3 | 1 | 1 | 1 | 0.3 | 0.3 |
Edge-Assigning Function | ACC, PRE, REC, F1, MCC (%) | ||
---|---|---|---|
66.7, 49.0, 54.0, 51.4, 26.2 | |||
(MMSE) | 83.3, 100, 48.7, 65.5, 62.3 | 85.1, 95.5, 56.8, 71.2, 65.8 | |
(CDR-SB) | 91.2, 90.9, 81.1, 85.7, 79.6 | 87.7, 89.7, 70.0, 79.1, 71.3 | |
(ADAS-Cog11) | 79.0, 78.3, 48.7, 60.0, 49.3 | 79.8, 75.0, 56.8, 64.6, 51.8 | |
(ADAS-Cog13) | 80.7, 82.6, 51.4, 63.3, 53.8 | 80.7, 72.7, 64.9, 68.6, 54.9 | |
(FAQ) | 83.3, 75.0, 73.0, 74.0, 61.7 | 85.1, 79.4, 73.0, 76.1, 65.4 | |
(ADNI-MEM) | 78.9, 78.3, 48.7, 60.0, 49.1 | 79.8, 71.9, 62.2, 66.7, 52.5 | |
(ADNI-EF) | 74.6, 70.0, 37.8, 49.1, 37.1 | 74.6, 72.2, 35.1, 47.3, 36.9 | |
(ADNI-LAN) | 70.2, 60.0, 24.3, 34.6, 23.0 | 74.6, 64.3, 48.7, 55.4, 38.9 | |
(ADNI-VS) | 67.5, 50.0, 5.0, 9.80, 6.0 | 73.7, 63.0, 46.0, 53.1, 36.3 |
Edge-Assigning Function | ACC, PRE, REC, F1, MCC (%) | ||
---|---|---|---|
68.3, 74.4, 75.3, 74.8, 37.7 | |||
(MMSE) | 74.8, 73.0, 94.8, 82.5, 56.4 | 78.1, 82.9, 81.8,82.3, 55.0 | |
(CDR-SB) | 96.8, 95.1, 100, 97.5, 93.1 | 96.8, 97.0, 84.4, 90.3, 93.6 | |
(ADAS-Cog11) | 77.2, 80.3, 84.4, 82.3, 54.7 | 78.9, 82.3, 84.4, 83.3, 57.3 | |
(ADAS-Cog13) | 85.4, 89.3, 87.0, 88.1, 68.9 | 83.7, 84.8, 87.0, 85.9, 66.0 | |
(FAQ) | 82.9, 98.3, 74.0, 84.4, 61.1 | 82.1, 98.3, 72.7, 83.6, 59.2 | |
(ADNI-MEM) | 75.0, 74.0, 94.0, 82.8, 56.2 | 86.2, 88.5, 89.6, 89.0, 71.0 | |
(ADNI-EF) | 67.5, 66.7, 96.1, 78.7, 48.2 | 67.5, 66.7, 96.1, 78.7, 48.2 | |
(ADNI-LAN) | 69.9, 73.8, 80.5, 77.0, 42.4 | 69.9, 73.8, 80.5, 77.0, 42.4 | |
(ADNI-VS) | 62.6, 62.6, 100, 77.0, 45.5 | 62.6, 62.6, 100, 77.0, 45.5 |
Study | Model | Dataset | Image Modality | ACC (%) | ||
---|---|---|---|---|---|---|
AD versus CN | AD versus MCI | MCI versus CN | ||||
Kang et al. 2021 [5] | 2D DCGAN | AD: 187 MCI: 382 CN: 229 | T1-weighted MRI | 90.36 | 77.16 | 72.36 |
Liu et al. 2020 [6] | 3D UNet + DenseNet | AD: 97 MCI: 233 CN: 119 | T1-weighted MRI | 88.90 | 76.20 | |
Tufail et al. 2022 [39] | 3D VGG | AD: 94 MCI: 97 CN: 102 | PET | 86.63 | 68.50 | 62.22 |
Jiang et al. 2020 [11] | HI-GCN | AD: 34 MCI: 99 | rs-fMRI | 78.50 | ||
An et al. 2020 [40] | GCN | AD: 78 CN: 145 | rs-fMRI | 91.30 | ||
Li et al. 2021 [41] | TE-HI-GCN | AD: 34 MCI: 99 | rs-fMRI | 89.40 | ||
Li et al. 2022 [42] | RBF-GCN | AD: 169 MCI: 165 CN: 168 | T1-weighted MRI; DWI; amyloid-PET | 96.06 | 92.73 | 95.15 |
Proposed method | 3D DenseNet + GCN | AD: 187 MCI: 382 CN: 229 | T1-weighted MRI | 91.6 | 91.2 | 96.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Xiong, M.; Zhang, G.; Kang, W.; Sun, S.; Wu, S.; Initiative Alzheimer’s Disease Neuroimaging. A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification. Sensors 2023, 23, 1914. https://doi.org/10.3390/s23041914
Lin L, Xiong M, Zhang G, Kang W, Sun S, Wu S, Initiative Alzheimer’s Disease Neuroimaging. A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification. Sensors. 2023; 23(4):1914. https://doi.org/10.3390/s23041914
Chicago/Turabian StyleLin, Lan, Min Xiong, Ge Zhang, Wenjie Kang, Shen Sun, Shuicai Wu, and Initiative Alzheimer’s Disease Neuroimaging. 2023. "A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification" Sensors 23, no. 4: 1914. https://doi.org/10.3390/s23041914
APA StyleLin, L., Xiong, M., Zhang, G., Kang, W., Sun, S., Wu, S., & Initiative Alzheimer’s Disease Neuroimaging. (2023). A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification. Sensors, 23(4), 1914. https://doi.org/10.3390/s23041914