Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-Zadeh, K. Nanostructured Tungsten Oxide–Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for Smart Windows: Thin Films of Tungsten Oxide and Nickel Oxide, and Devices Based on These. J. Mater. Chem. 2006, 17, 127–156. [Google Scholar] [CrossRef]
- Mews, M.; Korte, L.; Rech, B. Oxygen Vacancies in Tungsten Oxide and Their Influence on Tungsten Oxide/Silicon Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 158, 77–83. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, J.; Liu, H.; Murugadoss, V.; Zu, G.; Che, H.; Lai, C.; Li, H.; Ding, T.; Gao, Q.; et al. Tungsten Oxide Nanostructures and Nanocomposites for Photoelectrochemical Water Splitting. Nanoscale 2019, 11, 18968–18994. [Google Scholar] [CrossRef] [PubMed]
- Mohd Razali, N.A.; Wan Salleh, W.N.; Aziz, F.; Jye, L.W.; Yusof, N.; Ismail, A.F. Review on Tungsten Trioxide as a Photocatalysts for Degradation of Recalcitrant Pollutants. J. Clean Prod. 2021, 309, 127438. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Li, X.; Ge, C.; Hussain, S.; Liu, G.; Qiao, G. WO3 Porous Nanosheet Arrays with Enhanced Low Temperature NO2 Gas Sensing Performance. Sens. Actuators B Chem. 2020, 316, 128050. [Google Scholar] [CrossRef]
- Kimura, Y.; Ibano, K.; Uehata, K.; Hirai, I.; Tae Lee, H.; Ueda, Y. Improved Hydrogen Gas Sensing Performance of WO3 Films with Fibrous Nanostructured Surface. Appl. Surf. Sci. 2020, 532, 147274. [Google Scholar] [CrossRef]
- Mattoni, G.; de Jong, B.; Manca, N.; Tomellini, M.; Caviglia, A.D. Single-Crystal Pt-Decorated WO3 Ultrathin Films: A Platform for Sub-Ppm Hydrogen Sensing at Room Temperature. ACS Appl. Nano Mater. 2018, 1, 3446–3452. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, P.; Gupta, G. Dimension Dependency of Tungsten Oxide for Efficient Gas Sensing. Env. Sci. Nano. 2022, 9, 40–60. [Google Scholar] [CrossRef]
- Adilakshmi, G.; Sivasankar Reddy, A.; Sreedhara Reddy, P.; Seshendra Reddy, C. Electron Beam Evaporated Nanostructure WO3 Films for Gas Sensor Application. Mater. Sci. Eng. B 2021, 273, 115421. [Google Scholar] [CrossRef]
- Chao, J.; Liu, Z.; Xing, S.; Gao, Q.; Zhao, J. Enhanced Ammonia Detection of Gas Sensors Based on Square-like Tungsten Oxide Loaded by Pt Nanoparticles. Sens. Actuators B Chem. 2021, 347, 130621. [Google Scholar] [CrossRef]
- Nie, L.; Guo, X.; Gao, C.; Wu, X.; Chen, J.; Peng, L. Fabrication and Optical Hydrogen Gas Sensing Property of Hierarchical WO3 Porous/Nanowires Film. Mater. Lett. 2022, 314, 131805. [Google Scholar] [CrossRef]
- Qadri, M.U.; Diaz, A.F.D.; Cittadini, M.; Martucci, A.; Pujol, M.C.; Ferré-Borrull, J.; Llobet, E.; Aguiló, M.; Díaz, F. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films. Sensors 2014, 14, 11427–11443. [Google Scholar] [CrossRef]
- Chang, C.H.; Chou, T.C.; Chen, W.C.; Niu, J.S.; Lin, K.W.; Cheng, S.Y.; Tsai, J.H.; Liu, W.C. Study of a WO3 Thin Film Based Hydrogen Gas Sensor Decorated with Platinum Nanoparticles. Sens. Actuators B Chem. 2020, 317, 128145. [Google Scholar] [CrossRef]
- Nishijima, Y.; Enomonoto, K.; Okazaki, S.; Arakawa, T.; Balčytis, A.; Juodkazis, S. Pulsed Laser Deposition of Pt-WO3 of Hydrogen Sensors under Atmospheric Conditions. Appl. Surf. Sci. 2020, 534, 147568. [Google Scholar] [CrossRef]
- Lee, J.; Koo, H.; Kim, S.Y.; Kim, S.J.; Lee, W. Electrostatic Spray Deposition of Chemochromic WO3-Pd Sensor for Hydrogen Leakage Detection at Room Temperature. Sens. Actuators B Chem. 2021, 327, 128930. [Google Scholar] [CrossRef]
- Longato, A.; Vanzan, M.; Colusso, E.; Corni, S.; Martucci, A.; Longato, A.; Colusso, E.; Martucci, A.; Vanzan, M.; Corni, S. Enhancing Tungsten Oxide Gasochromism with Noble Metal Nanoparticles: The Importance of the Interface. Small 2022, 19, 2205522. [Google Scholar] [CrossRef]
- Boudiba, A.; Roussel, P.; Zhang, C.; Olivier, M.G.; Snyders, R.; Debliquy, M. Sensing Mechanism of Hydrogen Sensors Based on Palladium-Loaded Tungsten Oxide (Pd–WO3). Sens. Actuators B Chem. 2013, 187, 84–93. [Google Scholar] [CrossRef]
- Ippolito, S.J.; Kandasamy, S.; Kalantar-Zadeh, K.; Wlodarski, W. Hydrogen Sensing Characteristics of WO3 Thin Film Conductometric Sensors Activated by Pt and Au Catalysts. Sens. Actuators B Chem. 2005, 108, 154–158. [Google Scholar] [CrossRef]
- Mineo, G.; Moulaee, K.; Neri, G.; Mirabella, S.; Bruno, E. H2 Detection Mechanism in Chemoresistive Sensor Based on Low-Cost Synthesized WO3 Nanorods. Sens. Actuators B Chem. 2021, 348, 130704. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Martucci, A.; Yaacob, M.; Ou, J.; Kalantar-Zadeh, K.; Wlodarski, W. WO3-Au-Pt Nanocrystalline Thin Films as Optical Gas Sensors. Sens. Lett. 2011, 9, 595–599. [Google Scholar] [CrossRef]
- Amrehn, S.; Wu, X.; Wagner, T. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing. ACS Sens. 2018, 3, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.Z.; Sadek, A.Z.; Yaacob, M.H.; Anderson, D.P.; Matthews, G.; Golovko, V.B.; Wlodarski, W. Optical Characterisation of Nanostructured Au/WO3 Thin Films for Sensing Hydrogen at Low Concentrations. Sens. Actuators B Chem. 2013, 179, 125–130. [Google Scholar] [CrossRef]
- Widenkvist, E.; Quinlan, R.A.; Holloway, B.C.; Grennberg, H.; Jansson, U. Synthesis of Nanostructured Tungsten Oxide Thin Films. Cryst. Growth Des. 2008, 8, 3750–3753. [Google Scholar] [CrossRef]
- Evecan, D.; Zayim, E. Highly Uniform Electrochromic Tungsten Oxide Thin Films Deposited by E-Beam Evaporation for Energy Saving Systems. Curr. Appl. Phys. 2019, 19, 198–203. [Google Scholar] [CrossRef]
- Buso, D.; Pacifico, J.; Martucci, A.; Mulvaney, P. Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization. Adv. Funct. Mater. 2007, 17, 347–354. [Google Scholar] [CrossRef]
- Buso, D.; Palmer, L.; Bello, V.; Mattei, G.; Post, M.; Mulvaney, P.; Martucci, A. Self-Assembled Gold Nanoparticle Monolayers in Sol–Gel Matrices: Synthesis and Gas Sensing Applications. J. Mater. Chem. 2009, 19, 2051–2057. [Google Scholar] [CrossRef]
- Valyukh, I.; Green, S.; Arwin, H.; Niklasson, G.A.; Wäckelgård, E.; Granqvist, C.G. Spectroscopic Ellipsometry Characterization of Electrochromic Tungsten Oxide and Nickel Oxide Thin Films Made by Sputter Deposition. Sol. Energy Mater. Sol. Cells 2010, 94, 724–732. [Google Scholar] [CrossRef]
- Sando, D.; Carrétéro, C.; Grisolia, M.N.; Barthélémy, A.; Nagarajan, V.; Bibes, M. States in the Gap. Adv. Opt. Mater. 2018, 6, 1700836. [Google Scholar] [CrossRef]
- Kwong, W.L.; Qiu, H.; Nakaruk, A.; Koshy, P.; Sorrell, C.C. Photoelectrochemical Properties of WO3 Thin Films Prepared by Electrodeposition. Energy Procedia 2013, 34, 617–626. [Google Scholar] [CrossRef]
- Bujji Babu, M.; Madhuri, V.; Structural, K. Morphological and Optical Properties of Electron Beam Evaporated WO3 Thin Films. J. Taibah Univ. Sci. 2017, 11, 1232–1237. [Google Scholar] [CrossRef]
- Chen, Q.L.; Lai, X.; Yan, M.L.; Tang, G.R.; Luo, J.Y.; Chen, J.; Xie, W.G. Preparation of Tungsten Oxide Nanoplate Thin Film and Its Gas Sensing Properties. Adv. Mater. Res. 2013, 687–690. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Bersani, M.; Mattei, G.; Nguyen, T.L.; Mulvaney, P.; Martucci, A. Cooperative Effect of Au and Pt inside TiO2 Matrix for Optical Hydrogen Detection at Room Temperature Using Surface Plasmon Spectroscopy. Nanoscale 2012, 4, 5972–5979. [Google Scholar] [CrossRef]
- Burkhardt, S.; Elm, M.T.; Lani-Wayda, B.; Klar, P.J. In Situ Monitoring of Lateral Hydrogen Diffusion in Amorphous and Polycrystalline WO3 Thin Films. Adv. Mater. Interfaces 2018, 5, 1701587. [Google Scholar] [CrossRef]
- Yaacob, M.H.; Breedon, M.; Kalantar-zadeh, K.; Wlodarski, W. Absorption Spectral Response of Nanotextured WO3 Thin Films with Pt Catalyst towards H2. Sens. Actuators B Chem. 2009, 137, 115–120. [Google Scholar] [CrossRef]
- Xiang, Q.; Meng, G.F.; Zhao, H.B.; Zhang, Y.; Li, H.; Ma, W.J.; Xu, J.Q. Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties forPhotocatalysis and Gas Sensing. J. Phys. Chem. C 2010, 114, 2049–2055. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Gulglielmi, M.; Martucci, A.; Giancaterini, L.; Cantalini, C. Enhanced optical and electrical gas sensing response of sol–gel based NiO–Au and ZnO–Au nanostructured thin films. Sens. Actuators B Chem. 2012, 164, 54–63. [Google Scholar] [CrossRef]
- Amani, E.; Khojier, K.; Zoriasatain, S. Improving the hydrogen gas sensitivity of WO3 thin films by modifying the deposition angle andthickness of different promoter layers. Int. J. Hydrogen Energy 2017, 42, 29620–29628. [Google Scholar] [CrossRef]
Sample | WO3 Phase | Processing Conditions | Thickness nm |
---|---|---|---|
A-WO3 | amorphous | E-beam deposition + thermal stabilization @300 °C × 3 h | 470 |
C-WO3_500 | crystalline | E-beam deposition + thermal treatment @550 °C × 2 h | 420 |
C-WO3_300 | crystalline | E-beam deposition + thermal treatment @550 °C × 2 h | 340 |
Nano-WO3 | crystalline nanoplates | E-beam deposition + HNO3 1.5 M @ 50 °C × 3 h + drying over plate @150 °C × 30 min + thermal treatment @550 °C × 2 h | / |
Sample | Process | Operating Temperature | Type of Response | Hydrogen Concentration | Response Time | Reference |
---|---|---|---|---|---|---|
C-WO3_500 | E-beam + NPs spinning | 250 °C | Absorbance | 1% in air | 3.1 min | This work |
C-WO3_300 | E-beam + NPs spinning | 250 °C | Absorbance | 1% in air | 1.8 min | This work |
Nano-WO3 | E-beam + acid treatment + NPs spinning | 250 °C | Absorbance | 1% in air | 53 s | This work |
NiO-Au | Sol-gel | 300 °C | Absorbance | 1% in air | 2.5 min | [37] |
ZnO-Au | Sol-gel | 300 °C | Absorbance | 1% in air | 70 s | [37] |
TiO2-Au | Sol-gel | Room T | Absorbance | 1% in air | 3 min | [33] |
TiO2-Pt | Sol-gel | Room T | Absorbance | 1% in air | 20–40 s | [33] |
WO3-Au | Sol-gel | 200 °C | Absorbance | 5% in Ar | 19 min | [17] |
WO3-Pt | Sol-gel | 200 °C | Absorbance | 5% in Ar | 20 s | [17] |
WO3-Pt | RF-Magnetron Sputtering | 300 K | Absorbance | 1% in air | 55 s | [13] |
WO3-Pt | RF-Magnetron Sputtering | 423 K | Absorbance | 1% in air | 360 s | [13] |
Porous/nanowires WO3-Pt films | Solvothermal And PS template + sputtering | Room T | Transmittance | 4% in Ar | 24.8 s | [12] |
WO3-Pd | Electrostatic Spray deposition | Room T | Color (reflectance) | 1% in N2 | 15–30 s | [16] |
WO3-Au Nano rods | Hydrothermal | 290 °C | Resistance | 50 ppm | 8 s | [36] |
WO3-Pt | E-beam | 80 °C | Current | 0.1% in air | 40 s | [38] |
WO3-Au | E-beam | 200 °C | Current | 0.1% in air | 60 s | [38] |
WO3-Pt | Sputtering | 200 °C | Current | 1% in air | 200 s | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colusso, E.; Rigon, M.; Corso, A.J.; Pelizzo, M.G.; Martucci, A. Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles. Sensors 2023, 23, 1936. https://doi.org/10.3390/s23041936
Colusso E, Rigon M, Corso AJ, Pelizzo MG, Martucci A. Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles. Sensors. 2023; 23(4):1936. https://doi.org/10.3390/s23041936
Chicago/Turabian StyleColusso, Elena, Michele Rigon, Alain Jody Corso, Maria Guglielmina Pelizzo, and Alessandro Martucci. 2023. "Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles" Sensors 23, no. 4: 1936. https://doi.org/10.3390/s23041936
APA StyleColusso, E., Rigon, M., Corso, A. J., Pelizzo, M. G., & Martucci, A. (2023). Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles. Sensors, 23(4), 1936. https://doi.org/10.3390/s23041936