A Structure-Based Iterative Closest Point Using Anderson Acceleration for Point Clouds with Low Overlap
Abstract
:1. Introduction
2. Related Work
2.1. Correspondences Based on 3D Features
2.2. Handcrafted Registration Methods
2.3. Deep Point-Cloud Registration
3. Materials and Methods
3.1. Problem Formulation and Classic ICP Revisited
- (1)
- Find the corresponding closest point for each point based on the last iterative transformation .
- (2)
- Update the transformation by minimizing the -norm error E between the corresponding points, and render the result as the transformation .
3.2. Feature Point Extraction
3.3. Error Model
3.4. Anderson Acceleration for Fixed-Point Problem
4. Experiments and Results
4.1. RealSense L515 Data
4.2. KITTI Odometry Dataset
5. Discussion
6. Conclusions
- We propose a method to extract planar and edge-related feature points in data obtained from mechanical LiDAR and solid-state LiDAR.
- We formulate a non-linear optimization problem by examining structural correspondences between the planar and the edge-related points.
- Rewritten the problem as a fixed-point equation, we apply Anderson acceleration to speed up convergence and use the Lie algebra to represent a rigid transformation when solving the optimization function.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ICP | Iterative Closest Point |
LiDAR | Light Detection and Ranging |
NDT | Normal Distribution Transform |
SLAM | Simultaneous Localization and Mapping |
References
- Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Proceedings of the Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014; Volume 2, pp. 1–9. [Google Scholar]
- Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Monji-Azad, S.; Hesser, J.; Löw, N. A review of non-rigid transformations and learning-based 3D point cloud registration methods. ISPRS J. Photogramm. Remote Sens. 2023, 196, 58–72. [Google Scholar] [CrossRef]
- Choi, C.; Taguchi, Y.; Tuzel, O.; Liu, M.Y.; Ramalingam, S. Voting-based pose estimation for robotic assembly using a 3D sensor. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012; pp. 1724–1731. [Google Scholar]
- Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1802–1811. [Google Scholar]
- Makovetskii, A.; Voronin, S.; Kober, V.; Tihonkih, D. Affine registration of point clouds based on point-to-plane approach. Procedia Eng. 2017, 201, 322–330. [Google Scholar] [CrossRef]
- Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A.; Schindler, K. Predator: Registration of 3d point clouds with low overlap. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4267–4276. [Google Scholar]
- Liu, Z.; Zhang, F.; Hong, X. Low-cost retina-like robotic lidars based on incommensurable scanning. IEEE/ASME Trans. Mechatronics 2021, 27, 58–68. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, 12–15 November 1991; Volume 1611, pp. 586–606. [Google Scholar]
- Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25. [Google Scholar]
- Khoshelham, K. Automated localization of a laser scanner in indoor environments using planar objects. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–7. [Google Scholar]
- Van Nam, D.; Gon-Woo, K. Solid-state LiDAR based-SLAM: A concise review and application. In Proceedings of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of Korea, 17–20 January 2021; pp. 302–305. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef]
- Ran, H.; Liu, J.; Wang, C. Surface representation for point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 18942–18952. [Google Scholar]
- Sheik, N.A.; Deruyter, G.; Veelaert, P. Plane-based robust registration of a building scan with its BIM. Remote Sens. 2022, 14, 1979. [Google Scholar] [CrossRef]
- Stancelova, P.; Sikudova, E.; Cernekova, Z. 3D Feature detector-descriptor pair evaluation on point clouds. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 590–594. [Google Scholar]
- Steder, B.; Rusu, R.B.; Konolige, K.; Burgard, W. Point feature extraction on 3D range scans taking into account object boundaries. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2601–2608. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature histograms. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Zaharia, T.; Preteux, F.J. Hough transform-based 3D mesh retrieval. In Proceedings of the Vision Geometry X, San Diego, CA, USA, 29–30 July 2001; Volume 4476, pp. 175–185. [Google Scholar]
- Sun, B. 3D Global Shape Descriptors Applied in Scan Registration. Ph.D. Thesis, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky, Hamburg, Germany, 2015. [Google Scholar]
- Forstner, W.; Khoshelham, K. Efficient and accurate registration of point clouds with plane to plane correspondences. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2165–2173. [Google Scholar]
- Choy, C.; Park, J.; Koltun, V. Fully convolutional geometric features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8958–8966. [Google Scholar]
- Gojcic, Z.; Zhou, C.; Wegner, J.D.; Wieser, A. The perfect match: 3d point cloud matching with smoothed densities. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5545–5554. [Google Scholar]
- Bai, X.; Luo, Z.; Zhou, L.; Fu, H.; Quan, L.; Tai, C.L. D3feat: Joint learning of dense detection and description of 3d local features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6359–6367. [Google Scholar]
- Ao, S.; Hu, Q.; Yang, B.; Markham, A.; Guo, Y. Spinnet: Learning a general surface descriptor for 3d point cloud registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11753–11762. [Google Scholar]
- Yew, Z.J.; Lee, G.H. Regtr: End-to-end point cloud correspondences with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 6677–6686. [Google Scholar]
- Shi, Z.; Xiao, G.; Zheng, L.; Ma, J.; Chen, R. JRA-Net: Joint representation attention network for correspondence learning. Pattern Recognit. 2023, 135, 109180. [Google Scholar] [CrossRef]
- Martínez-Otzeta, J.M.; Rodríguez-Moreno, I.; Mendialdua, I.; Sierra, B. RANSAC for Robotic Applications: A Survey. Sensors 2022, 23, 327. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Luo, H.; Yan, Y.; Xiao, G.; Wang, H. Co-Clustering on Bipartite Graphs for Robust Model Fitting. IEEE Trans. Image Process. 2022, 31, 6605–6620. [Google Scholar] [CrossRef] [PubMed]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152. [Google Scholar]
- Billings, S.D.; Boctor, E.M.; Taylor, R.H. Iterative most-likely point registration (IMLP): A robust algorithm for computing optimal shape alignment. PLoS ONE 2015, 10, e0117688. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Wang, L.; Bi, L. Robust GICP-based 3D LiDAR SLAM for underground mining environment. Sensors 2019, 19, 2915. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 2241–2254. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. Pointnetlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7163–7172. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Lu, W.; Wan, G.; Zhou, Y.; Fu, X.; Yuan, P.; Song, S. Deepvcp: An end-to-end deep neural network for point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 12–21. [Google Scholar]
- Wang, Y.; Solomon, J.M. Deep closest point: Learning representations for point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3523–3532. [Google Scholar]
- Bai, X.; Luo, Z.; Zhou, L.; Chen, H.; Li, L.; Hu, Z.; Fu, H.; Tai, C.L. Pointdsc: Robust point cloud registration using deep spatial consistency. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15859–15869. [Google Scholar]
- Xu, H.; Liu, S.; Wang, G.; Liu, G.; Zeng, B. Omnet: Learning overlapping mask for partial-to-partial point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3132–3141. [Google Scholar]
- Walker, H.F.; Ni, P. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 2011, 49, 1715–1735. [Google Scholar] [CrossRef]
- Diebel, J. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 2006, 58, 1–35. [Google Scholar]
- Iserles, A.; Munthe-Kaas, H.Z.; Nørsett, S.P.; Zanna, A. Lie-group methods. Acta Numer. 2000, 9, 215–365. [Google Scholar] [CrossRef]
- Potra, F.A.; Engler, H. A characterization of the behavior of the Anderson acceleration on linear problems. Linear Algebra Its Appl. 2013, 438, 1002–1011. [Google Scholar] [CrossRef]
- Biber, P.; Straßer, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27 October 27–1 November 2003; Volume 3, pp. 2743–2748. [Google Scholar]
- Stechschulte, J.; Heckman, C. Hidden Markov random field iterative closest point. arXiv 2017, arXiv:1711.05864. [Google Scholar]
Relative Translation Error [cm] | Relative Rotation Error [°] | Run Time for Processing [s] | |
---|---|---|---|
ICP [9] | 7.32 | 0.42 | 28.71 |
GICP [33] | 3.24 | 0.31 | 142.2 |
NDT [45] | 38.92 | 12.83 | 23.21 |
HMRF-ICP [46] | 6.31 | 0.89 | 13.41 |
FPFH [19] | 9.12 | 1.39 | 16.96 + 3.22 |
PointNetLK [35] | 12.51 | 2.31 | 21.41 |
Predator [7] | 3.18 | 0.22 | 7.19 |
Our methods | 3.25 | 0.21 | 2.25 + 2.31 |
Relative Translation Error [cm] | Relative Rotation Error [°] | Run Time for Processing [s] | |
---|---|---|---|
ICP [9] | 6.29 | 0.16 | 26.81 |
GICP [33] | 4.92 | 0.31 | 172.6 |
NDT [45] | 29.67 | 12.83 | 32.71 |
HMRF-ICP [46] | 8.54 | 1.01 | 11.98 |
FPFH [19] | 11.12 | 1.77 | 14.26 + 4.51 |
PointNetLK [35] | 14.32 | 1.97 | 18.49 |
Predator [7] | 5.12 | 0.19 | 5.29 |
Our methods | 5.01 | 0.21 | 1.03 + 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, C.; Chen, X.; Zhang, Y.; Gao, K. A Structure-Based Iterative Closest Point Using Anderson Acceleration for Point Clouds with Low Overlap. Sensors 2023, 23, 2049. https://doi.org/10.3390/s23042049
Zeng C, Chen X, Zhang Y, Gao K. A Structure-Based Iterative Closest Point Using Anderson Acceleration for Point Clouds with Low Overlap. Sensors. 2023; 23(4):2049. https://doi.org/10.3390/s23042049
Chicago/Turabian StyleZeng, Chao, Xiaomei Chen, Yongtian Zhang, and Kun Gao. 2023. "A Structure-Based Iterative Closest Point Using Anderson Acceleration for Point Clouds with Low Overlap" Sensors 23, no. 4: 2049. https://doi.org/10.3390/s23042049
APA StyleZeng, C., Chen, X., Zhang, Y., & Gao, K. (2023). A Structure-Based Iterative Closest Point Using Anderson Acceleration for Point Clouds with Low Overlap. Sensors, 23(4), 2049. https://doi.org/10.3390/s23042049