Electrochemical Analysis of Attoliter Water Droplets in Organic Solutions through Partitioning Equilibrium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments
2.3. Preparation of Water-In-Oil Emulsions (Water Droplets)
2.4. Preparation of the Pt-UME
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baker, L.A. Perspective and prospectus on single-entity electrochemistry. J. Am. Chem. Soc. 2018, 140, 15549–15559. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.T.; Lee, J.; Kim, H.Y.; Nam, K.M.; Kim, B.K. Current research on single-entity electrochemistry for soft nanoparticle detection: Introduction to detection methods and applications. Biosens. Bioelectron. 2020, 151, 111999. [Google Scholar] [CrossRef] [PubMed]
- Kanokkanchana, K.; Tschulik, K. Electronic circuit simulations as a tool to understand distorted signals in single-entity electrochemistry. J. Phys. Chem. Lett. 2022, 13, 10120–10125. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Edwards, M.A. Stochasticity in single-entity electrochemistry. Curr. Opin. Electrochem. 2021, 25, 100632. [Google Scholar] [CrossRef]
- Sekretareva, A. Single-entity electrochemistry of collision in sensing applications. Sens. Actuators Rep. 2021, 3, 100037. [Google Scholar] [CrossRef]
- Lu, S.M.; Peng, Y.Y.; Ying, Y.L.; Long, Y.T. Electrochemical sensing at a confined space. Anal. Chem. 2020, 92, 5621–5644. [Google Scholar] [CrossRef]
- Bentley, C.L.; Kang, M.; Unwin, P.R. Nanoscale surface structure–activity in electrochemistry and electrocatalysis. J. Am. Chem. Soc. 2019, 141, 2179–2193. [Google Scholar] [CrossRef]
- Peng, Y.Y.; Qian, R.C.; Hafez, M.E.; Long, Y.T. Stochastic collision nanoelectrochemistry: A review of recent developments. ChemElectroChem 2017, 4, 977–985. [Google Scholar] [CrossRef]
- Oja, S.M.; Fan, Y.; Armstrong, C.M.; Defnet, P.; Zhang, B. Nanoscale electrochemistry revisited. Anal. Chem. 2016, 88, 414–430. [Google Scholar] [CrossRef]
- Lee, J.; Kang, Y.; Chang, J.; Song, J.; Kim, B.K. Determination of serotonin concentration in single human platelets through single-entity electrochemistry. ACS Sens. 2020, 5, 1943–1948. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Yu, P.; Chen, X.; Wang, J.; Mao, L. Counting and sizing of single vesicles/liposomes by electrochemical events. ChemElectroChem 2018, 5, 2954–2962. [Google Scholar] [CrossRef]
- Smida, H.; Thobie-Gautier, C.; Boujtita, M.; Lebègue, E. Recent advances in single liposome electrochemistry. Curr. Opin. Electrochem. 2022, 36, 101141. [Google Scholar] [CrossRef]
- Lebègue, E.; Anderson, C.M.; Dick, J.E.; Webb, L.J.; Bard, A.J. Electrochemical detection of single phospholipid vesicle collisions at a Pt ultramicroelectrode. Langmuir 2015, 31, 11734–11739. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, C.; Ewing, A.G. Single-vesicle electrochemistry following repetitive stimulation reveals a mechanism for plasticity changes with iron deficiency. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200716. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, B.-K.; Kang, M.; Park, J.H. Label-free detection of single living bacteria via electrochemical collision event. Sci. Rep. 2016, 6, 30022. [Google Scholar] [CrossRef]
- Pandey, P.; Ghimire, G.; Garcia, J.; Rubfiaro, A.; Wang, X.; Tomitaka, A.; Nair, M.; Kaushik, A.; He, J. Single-entity approach to investigate surface charge enhancement in magnetoelectric nanoparticles induced by AC magnetic field stimulation. ACS Sens. 2021, 6, 340–347. [Google Scholar] [CrossRef]
- Sepunaru, L.; Tschulik, K.; Batchelor-McAuley, C.; Gavish, R.; Compton, R.G. Electrochemical detection of single E. coli bacteria labeled with silver nanoparticles. Biomater. Sci. 2015, 3, 816–820. [Google Scholar] [CrossRef]
- Toh, H.S.; Compton, R.G. Electrochemical detection of single micelles through ‘nano-impacts’. Chem. Sci. 2015, 6, 5053–5058. [Google Scholar] [CrossRef]
- Ho, T.L.T.; Hoang, N.T.T.; Lee, J.; Park, J.H.; Kim, B.K. Determining mean corpuscular volume and red blood cell count using electrochemical collision events. Biosens. Bioelectron. 2018, 110, 155–159. [Google Scholar] [CrossRef]
- Sabaragamuwe, S.G.; Conti, D.; Puri, S.R.; Andreu, I.; Kim, J. Single-entity electrochemistry of nanoemulsion: The nanostructural effect on its electrochemical behavior. Anal. Chem. 2019, 91, 9599–9607. [Google Scholar] [CrossRef]
- Kim, S.D.; Park, J.H.; Ahn, H.; Lee, J.; Shin, C.H.; Jang, W.D.; Kim, B.K.; Ahn, H.S. The discrete single-entity electrochemistry of Pickering emulsions. Nanoscale 2022, 14, 6981–6989. [Google Scholar] [CrossRef] [PubMed]
- Dick, J.E.; Renault, C.; Kim, B.K.; Bard, A.J. Simultaneous detection of single attoliter droplet collisions by electrochemical and electrogenerated chemiluminescent responses. Angew. Chem. Int. Ed. 2014, 126, 12053–12056. [Google Scholar] [CrossRef]
- Yang, H.-j.; Kwon, H.; Kim, B.-K.; Park, J.H. Electrochemical detection of single attoliter aqueous droplets in electrolyte-free organic solvent via collision events. Electrochim. Acta 2019, 320, 134620. [Google Scholar] [CrossRef]
- Zhang, H.; Sepunaru, L.; Sokolov, S.V.; Laborda, E.; Batchelor-McAuley, C.; Compton, R.G. Electrochemistry of single droplets of inverse (water-in-oil) emulsions. Phys. Chem. Chem. Phys. 2017, 19, 15662–15666. [Google Scholar] [CrossRef]
- Li, Y.; Deng, H.; Dick, J.E.; Bard, A.J. Analyzing benzene and cyclohexane emulsion droplet collisions on ultramicroelectrodes. Anal. Chem. 2015, 87, 11013–11021. [Google Scholar] [CrossRef]
- Park, H.; Park, J.H. In situ monitoring of collision and recollision events of single attoliter droplets via single-entity electrochemistry. J. Phys. Chem. Lett. 2020, 11, 10250–10255. [Google Scholar] [CrossRef]
- Raj Kumar, T.; Gnana Kumar, G.; Manthiram, A. Biomass-derived 3D carbon aerogel with carbon shell-confined binary metallic nanoparticles in CNTs as an efficient electrocatalyst for microfluidic direct ethylene glycol fuel cells. Adv. Energy Mater. 2019, 9, 1803238. [Google Scholar] [CrossRef]
- Ramachandran, K.; Kalpana, D.; Sathishkumar, Y.; Lee, Y.S.; Ravichandran, K. A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection. J. Ind. Eng. Chem. 2016, 35, 29–35. [Google Scholar] [CrossRef]
- Park, J.H.; Jin, S.M.; Lee, E.; Ahn, H.S. Electrochemical synthesis of core–shell nanoparticles by seed-mediated selective deposition. Chem. Sci. 2021, 12, 13557–13563. [Google Scholar] [CrossRef]
- Lee, J.; Ho, T.L.T.; Kim, H.Y.; Park, J.H.; Kim, B.K. Direct electrolysis and detection of single nanosized water emulsion droplets in organic solvent using stochastic collisions. Electroanalysis 2019, 31, 167–171. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, J.; Bard, A.J. Electrochemistry of a single attoliter emulsion droplet in collisions. J. Am. Chem. Soc. 2015, 137, 2343–2349. [Google Scholar] [CrossRef]
- Ren, W.; Foltyn, P.; Geppert, A.; Weigand, B. Air entrapment and bubble formation during droplet impact onto a single cubic pillar. Sci. Rep. 2021, 11, 18018. [Google Scholar] [CrossRef]
- Robinson, D.A.; Liu, Y.; Edwards, M.A.; Vitti, N.J.; Oja, S.M.; Zhang, B.; White, H.S. Collision dynamics during the electrooxidation of individual silver nanoparticles. J. Am. Chem. Soc. 2017, 139, 16923–16931. [Google Scholar] [CrossRef]
- Robinson, D.A.; Edwards, M.A.; Liu, Y.; Ren, H.; White, H.S. Effect of viscosity on the collision dynamics and oxidation of individual Ag nanoparticles. J. Phys. Chem. C 2020, 124, 9068–9076. [Google Scholar] [CrossRef]
- Moon, H.; Park, J.H. In situ probing liquid/liquid interfacial kinetics through single nanodroplet electrochemistry. Anal. Chem. 2021, 93, 16915–16921. [Google Scholar] [CrossRef]
5:1 | 1 | 2.85 | 0.43 | 6.63 |
10:1 | 3.94 | 0.61 | 6.50 | |
20:1 | 5.40 | 0.73 | 7.40 | |
50:1 | 6.14 | 0.88 | 7.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, H.; Park, J.H. Electrochemical Analysis of Attoliter Water Droplets in Organic Solutions through Partitioning Equilibrium. Sensors 2023, 23, 2157. https://doi.org/10.3390/s23042157
Moon H, Park JH. Electrochemical Analysis of Attoliter Water Droplets in Organic Solutions through Partitioning Equilibrium. Sensors. 2023; 23(4):2157. https://doi.org/10.3390/s23042157
Chicago/Turabian StyleMoon, Hyeongkwon, and Jun Hui Park. 2023. "Electrochemical Analysis of Attoliter Water Droplets in Organic Solutions through Partitioning Equilibrium" Sensors 23, no. 4: 2157. https://doi.org/10.3390/s23042157
APA StyleMoon, H., & Park, J. H. (2023). Electrochemical Analysis of Attoliter Water Droplets in Organic Solutions through Partitioning Equilibrium. Sensors, 23(4), 2157. https://doi.org/10.3390/s23042157