High-Resolution Estimation of Suspended Solids and Particulate Phosphorus Using Acoustic Devices in a Hydrologically Managed Canal in South Florida, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.1.1. Characteristics and Limitations of Acoustic Devices
2.1.2. Acoustic Method
2.2. Study Area
2.3. Deployment in the Tamiami (L-29) Canal and Backscatter Processing
2.3.1. Acoustic Doppler Velocimeter (ADV)
2.3.2. Acoustic Doppler Current Profiler (ADCP)
2.4. Acoustic Backscatter Conversion and Correction
2.5. Water Sampling for TSS and TPP for Calibrations and Estimations
2.6. Discharge Data
3. Results
3.1. Acoustic Backscatter Processing for the Acoustic Doppler Current Profiler (ADCP)
3.2. Calibration Curves
3.3. Measured Total Suspended Solids (TSS) and Total Particulate Phosphorus (TPP) Used in Calibrations
4. Discussion
4.1. Justification for Not Correcting for Transmission Losses for ADCP Backscatter Processing
4.2. Vertical Profiles of Total Suspended Solids and Total Particulate Phosphorus in the Water Column of the L-29 Canal
4.3. Impact of Canal Discharges and Hydrology on Total Suspended Solids and Total Particulate Phosphorus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, P.J. Biological Effects of Fine Sediment in the Lotic Environment. Environ. Manag. 1997, 21, 203–217. [Google Scholar] [CrossRef]
- Kronvang, B.; Laubel, A.; Grant, R. Suspended Sediment and Particulate Phosphorus Transport and Delivery Pathways in an Arable Catchment, Gelbæk Stream, Denmark. Hydrol. Process. 1997, 11, 627–642. [Google Scholar] [CrossRef]
- Gartner, J.W. Estimation Of Suspended Solids Concentrations Based On Acoustic Backscatter Intensity: Theoretical Background. In Proceedings of the Turbidity and Other Sediment Surrogates Workshop, Reno, NV, USA, 30 April–2 May 2002. [Google Scholar]
- Latosinski, F.G.; Szupiany, R.N.; García, C.M.; Guerrero, M.; Amsler, M.L. Estimation of Concentration and Load of Suspended Bed Sediment in a Large River by Means of Acoustic Doppler Technology. J. Hydraul. Eng. 2014, 140, 04014023. [Google Scholar] [CrossRef]
- Noe, G.B.; Harvey, J.W.; Saiers, J.E. Characterization of suspended particles in Everglades wetlands. Limnol. Oceanogr. 2007, 52, 1166–1178. [Google Scholar] [CrossRef]
- Noe, G.B.; Harvey, J.W.; Schaffranek, R.W.; Larsen, L.G. Controls of Suspended Sediment Concentration, Nutrient Content, and Transport in a Subtropical Wetland. Wetlands 2010, 30, 39–54. [Google Scholar] [CrossRef]
- Zhao, H.; Piccone, T.; Diaz, O. Supporting Information for Canal Evaluations; Technical Publication WR-2015-003; South Florida Water Management District: West Palm Beach, FL, USA, 2015. [Google Scholar]
- Dorioz, J.M.; Cassell, E.A.; Orand, A.; Eisenman, K.G. Phosphorus storage, transport and export dynamics in the Foron River watershed. Hydrol. Process. 1998, 12, 285–309. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Dorioz, J.M. Soluble phosphorus dynamics in an agricultural watershed. Agronomie 2004, 24, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Gartner, J.W. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Mar. Geol. 2004, 211, 169–187. [Google Scholar] [CrossRef]
- Rai, A.K.; Kumar, A. Continuous measurement of suspended sediment concentration: Technological advancement and future outlook. Measurement 2015, 76, 209–227. [Google Scholar] [CrossRef]
- Harrison, J.W.; Lucius, M.A.; Farrell, J.L.; Eichler, L.W.; Relyea, R.A. Prediction of stream nitrogen and phosphorus concentrations from high-frequency sensors using Random Forests Regression. Sci. Total. Environ. 2021, 763, 143005. [Google Scholar] [CrossRef]
- Öztürk, M. Sediment Size Effects in Acoustic Doppler Velocimeter-Derived Estimates of Suspended Sediment Concentration. Water 2017, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Dwinovantyo, A.; Manik, H.M.; Prartono, T.; Susilohadi, S. Quantification and Analysis of Suspended Sediments Concentration Using Mobile and Static Acoustic Doppler Current Profiler Instruments. Adv. Acoust. Vib. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sedimentology of Aqueous Systems; Cristiano, P.; Charlesworth, S.M. (Eds.) John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Gray, J.R.; Gartner, J.W. Technological advances in suspended-sediment surrogate monitoring. Water Resour. Res. 2009, 45. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1029/2008WR007063 (accessed on 12 December 2022). [CrossRef] [Green Version]
- Dominguez Ruben, L.G.; Szupiany, R.N.; Latosinski, F.G.; López Weibel, C.; Wood, M.; Boldt, J. Acoustic Sediment Estimation Toolbox (ASET): A software package for calibrating and processing TRDI ADCP data to compute suspended-sediment transport in sandy rivers. Comput. Geosci. 2020, 140, 104499. [Google Scholar] [CrossRef]
- David, C.F.; Friedrichs, C.T. Versatility of the Sontek ADV: Measurements of sediment fall velocity, sediment concentration, and TKE production from wave contaminated velocity data. In Proceedings of the Coastal Sediments, Clearwater Beach, FL, USA, 18–23 May 2003. [Google Scholar]
- Schoellhamer, D.H.; Wright, S.A. Continuous measurement of suspended-sediment. In Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances; IAHS: Wallingford, UK, 2003; p. 28. [Google Scholar]
- Hamilton, L.J.; Shi, Z.; Zhang, S.Y. Acoustic Backscatter Measurements of Estuarine Suspended Cohesive Sediment Concentration Profiles. J. Coast. Res. 1998, 14, 1213–1224. [Google Scholar]
- Kostaschuk, R.; Best, J.; Villard, P.; Peakall, J.; Franklin, M. Measuring flow velocity and sediment transport with an acoustic Doppler current profiler. Geomorphology 2005, 68, 25–37. [Google Scholar] [CrossRef]
- Thevenot, M.M.; Prickett, T.L.; Kraus, N.C. Tylers Beach, Virginia, Dredged Material Plume Monitoring Project, September 27 to October 4, 1991; Coastal Engineering Research Center: Vicksburg, MS, USA, 1992. [Google Scholar]
- Fugate, D.C.; Friedrichs, C.T. Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST. Cont. Shelf. Res. 2002, 22, 1867–1886. [Google Scholar] [CrossRef]
- Wall, G.R.; Nystrom, E.A.; Litten, S. Use of an ADCP to Compute Suspended-Sediment Discharge in the Tidal Hudson River, New York; No. 2006-5055; USGS: Troy, NY, USA, 2006. [Google Scholar]
- Landers, M.N.; Straub, T.D.; Wood, M.S.; Domanski, M.M. Sediment Acoustic Index Method for Computing Continuous Suspended-Sediment Concentrations (Internet); Techniques and Methods; vols. 3-C5; Report No.: 3-C5; U.S. Geological Survey: Reston, VA, USA, 2016; p. 83. Available online: http://pubs.er.usgs.gov/publication/tm3C5 (accessed on 13 June 2021).
- Chanson, H.; Takeuchi, M.; Trevethan, M. Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary. J. Environ. Manag. 2008, 88, 1406–1416. [Google Scholar] [CrossRef] [Green Version]
- Diamond, J.S.; Cohen, M.J. Complex patterns of catchment solute–discharge relationships for coastal plain rivers. Hydrol. Process. 2018, 32, 388–401. [Google Scholar] [CrossRef]
- Onwuka, I.S.; Scinto, L.J.; Mahdavi Mazdeh, A. Comparative Use of Hydrologic Indicators to Determine the Effects of Flow Regimes on Water Quality in Three Channels across Southern Florida, USA. Water 2021, 13, 2184. [Google Scholar] [CrossRef]
- Harvey, R.G.; Loftus, W.F.; Rehage, J.S.; Mazzotti, F.J. Effects of Canals and Levees in Everglades Ecosystems; EDIS: Gainesville, FL, USA, 2011. [Google Scholar]
- Carter, K.; Redfield, G.; Ansar, M.; Glenn, L.; Huebner, R.; Maxted, J.; Pettit, C.; VanArman, J. Canals in South Florida: A Technical Support Document; SFWMD: West Palm Beach, FL, USA, 2010. [Google Scholar]
- Velasco, D.W.; Huhta, C.A. Experimental Verification of Acoustic Doppler Velocimeter (ADV®) Performance in Fine-Grained, High Sediment Concentration Fluids; Sontek: San Diego, CA, USA, 2009. [Google Scholar]
- SonTek. ADVField Technical Manual; SonTek Technical Documentation; Sontek: San Diego, CA, USA, 2001. [Google Scholar]
- Current Profiling Solutions Brochure. Available online: https://www.ysi.com/File%20Library/Documents/Brochures%20and%20Catalogs/current-profiling-solutions.pdf. (accessed on 8 February 2023).
- Acoustic Doppler Velocimeters (ADVs®)—Xylem. Available online: https://www.xylem.com/siteassets/brand/sontek/resources/brochure/sontek-acoustic-doppler-velocimeters-2017.pdf (accessed on 8 February 2023).
- SonTek. Argonaut™-SL System Manual Firmware; Version 12.0; SonTek™/YSI Corporation: San Diego, CA, USA, 2009; p. 316. [Google Scholar]
- Argonaut-XR MULTI-CELL DOPPLER CURRENT PROFILER. Available online: https://www.ysi.com/File%20Library/Documents/Brochures%20and%20Catalogs/argonaut-xr-brochure.pdf (accessed on 8 February 2023).
- Downing, A.; Thorne, P.D.; Vincent, C.E. Backscattering from a suspension in the near field of a piston transducer. J. Acoust. Soc. Am. 1995, 97, 1614–1620. [Google Scholar] [CrossRef]
- Gartner, J.W.; Cheng, R.T. The promises and pitfalls of estimating total suspended solids based on backscatter intensity from acoustic Doppler current profilers. In Proceedings of the Seventh Federal Interagency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001. [Google Scholar]
- McLean, A. Modified Water Deliveries: Improving Hydrologic Condition in Northeast Shark River Slough. 2015. Available online: https://www.nps.gov/ever/learn/nature/modwater.htm (accessed on 10 May 2020).
- Jacksonville District > Missions > Environmental > Ecosystem Restoration > Combined Operational Plan (Internet). Available online: https://www.saj.usace.army.mil/Missions/Environmental/Ecosystem-Restoration/G-3273-and-S-356-Pump-Station-Field-Test/ (accessed on 7 January 2023).
- Sarker, S.K.; Kominoski, J.S.; Gaiser, E.E.; Scinto, L.J.; Rudnick, D.T. Quantifying effects of increased hydroperiod on wetland nutrient concentrations during early phases of freshwater restoration of the Florida Everglades. Restor. Ecol. 2020, 28, 1561–1573. [Google Scholar] [CrossRef]
- Jenner, B. Beam Separation in ADPs and ADCPs. Available online: https://www.ysi.com/File%20Library/Documents/Technical%20Notes/beam-separation-in-adps-and-adcps.pdf (accessed on 5 July 2021).
- R: The R Project for Statistical Computing (Internet). Available online: https://www.r-project.org/ (accessed on 7 January 2023).
- MathWorks—Makers of MATLAB and Simulink (Internet). Available online: https://www.mathworks.com/ (accessed on 7 January 2023).
- Standard Operating Procedure for: Total Suspended Solids. 2007. Available online: https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/white-papers/apha-total-suspended-solids-procedure-white-paper.pdf (accessed on 2 March 2021).
- United States Environmental Protection Agency. Methods for Chemical Analysis of Water and Wastes; Environmental Monitoring and Support Laboratory: Cincinnati, OH, USA, 1983; pp. 475–490. [Google Scholar]
- Christian D Lopez Roque (Person)—ScienceBase-Directory (Internet). Available online: https://www.sciencebase.gov/directory/person/6250 (accessed on 6 April 2022).
- Manik, H.M.; Firdaus, R. Quantifying Suspended Sediment using Acoustic Doppler Current Profiler in Tidung Island Seawaters. Pertanika. J. Sci. Technol. 2021, 29, 363–385. [Google Scholar] [CrossRef]
- Wall, G.R.; Nystrom, E.A.; Litten, S. Suspended sediment transport in the freshwater reach of the Hudson River estuary in eastern New York. Estuaries Coasts 2008, 31, 542–553. [Google Scholar] [CrossRef] [Green Version]
- Venditti, J.G.; Church, M.; Attard, M.E.; Haught, D. Use of ADCPs for suspended sediment transport monitoring: An empirical approach: ADCPS FOR SUSPENDED SEDIMENT MONITORING. Water Resour. Res. 2016, 52, 2715–2736. [Google Scholar] [CrossRef]
- Daroub, S.H.; Josan, M.S.; Lang, T.A.; Waldon, M.G. L40 Canal Water Quality Survey Study Progress Report for 2007; University of Florida: Gainesville, FL, USA, 2007. [Google Scholar]
- Trefry, J.H.; Fox, A.L. Extreme Runoff of Chemical Species of Nitrogen and Phosphorus Threatens a Florida Barrier Island Lagoon. Front. Mar. Sci. 2021, 8, 752945. [Google Scholar] [CrossRef]
- Trefry, J.H.; Trocine, R.P.; Bennett, H. Sediment sourcing study of Lake Worth Lagoon and C-51 basin, Palm Beach County. In Final Report to Palm Beach County and the South Florida Water Management District for Contract R2008-0985; South Florida Water Management District: West Palm Beach, FL, USA, 2009. [Google Scholar]
- Savenko, V.S. Chemical composition of sediment load carried by rivers. Geochem. Int. 2007, 45, 816–824. [Google Scholar] [CrossRef]
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total. Environ. 2009, 407, 853–868. [Google Scholar] [CrossRef]
- Li, J.; Reardon, P.; McKinley, J.P.; Joshi, S.R.; Bai, Y.; Bear, K.; Jaisi, D.P. Water column particulate matter: A key contributor to phosphorus regeneration in a coastal eutrophic environment, the Chesapeake Bay. J. Geophys. Res. Biogeosciences. 2017, 122, 737–752. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Ouyang, Y. Phosphorus fractionation and distribution in sediments from wetlands and canals of a water conservation area in the Florida Everglades. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Daroub, S.H.; Stuck, J.D.; Lang, T.A.; Diaz, O.A. Particulate Phosphorus in the Everglades Agricultural Area: I—Introduction and Sources; EDIS: Gainesville, FL, USA, 2002. [Google Scholar]
- Daroub, S.H.; Stuck, J.D.; Lang, T.A.; Diaz, O.A. Particulate Phosphorus in the Everglades Agricultural Area: II—Transport Mechanisms; EDIS: Gainesville, FL, USA, 2002. [Google Scholar]
- Withers, P.J.A.; Jarvie, H.P. Delivery and cycling of phosphorus in rivers: A review. Sci. Total Environ. 2008, 400, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Moatar, F.; Abbott, B.W.; Minaudo, C.; Curie, F.; Pinay, G. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resour. Res. 2017, 53, 1270–1287. [Google Scholar] [CrossRef]
Parameters | Acoustic Doppler Velocimeters (ADVs) | Argonaut Acoustic Doppler Current Profilers (ADCPs) | References |
---|---|---|---|
Sampling volume distance/Max profiling range | 5–18 cm | 40 m | [32,33] |
Max depth range | 60–400 m | 10–200 m | [33,34] |
Min blanking distance | - | 0.07 m | [35] |
Bin size | - | 0.2–30 m | [35] |
Max number of bins | - | 10 + 1 | [33,35] |
Pressure sensor | 0.1% accuracy | 0.1% accuracy | [34,36] |
Temperature Resolution, Accuracy | 0.01 °C ± 0.1 °C | 0.01 °C ± 0.1 °C | [34,36] |
Velocity accuracy, resolution | 1% of measured velocity, 0.01 cm s−1 | ±1% of measured velocity, 0.1 cm s−1 | [34,36] |
Min and max velocity | 0.1 cm s−1–5 m s−1 | <0.01 m s−1–6.0 m s−1 | [32,34,35] |
Min Signal to Noise Ratio (SNR) for reliable velocity measurements | 5 dB | 3 dB | [32,35] |
Min correlation coefficient for reliable velocity measurements | ≥70% | - | [32] |
Site | Date | Depth (m) 1 | TSS (mg L−1) * | TPP | |
---|---|---|---|---|---|
(μg mg−1) | (μg L−1) | ||||
Upstream (UP) | 24 November 2021 | 0.25 | 2.10 | 1.19 | 2.50 |
0.75 | 1.75 | 1.27 | 2.23 | ||
1.25 | 3.35 | 0.79 | 2.66 | ||
1.75 | 2.50 | 0.92 | 2.31 | ||
2.25 | 3.15 | 0.91 | 2.85 | ||
2.75 | 3.35 | 0.89 | 2.97 | ||
3.25 | 3.25 | 0.88 | 2.87 | ||
4.25 | 2.75 | 0.95 | 2.62 | ||
Downstream (DS) | 22 June 2021 | 1.2 | 4.50 * | 2.50 | 11.25 |
2.2 | 5.40 | 2.23 | 12.02 | ||
3.2 | 5.10 | 2.09 | 10.64 | ||
4.2 | 8.20 | 1.78 | 14.60 | ||
5.0 | 26.0 | 1.15 | 29.87 | ||
Interior (INT) | 19 August 2021 | 0.5 | 1.20 | 3.33 | 3.99 |
1.0 | 1.10 | 3.66 | 4.03 | ||
1.5 | 1.20 | 3.50 | 4.20 | ||
2.0 | 1.30 | 3.57 | 4.64 | ||
2.5 | 1.70 | 3.26 | 5.54 | ||
3.0 | 1.60 | 3.25 | 5.19 | ||
3.5 | 1.80 | 2.82 | 5.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onwuka, I.S.; Scinto, L.J.; Fugate, D.C. High-Resolution Estimation of Suspended Solids and Particulate Phosphorus Using Acoustic Devices in a Hydrologically Managed Canal in South Florida, USA. Sensors 2023, 23, 2281. https://doi.org/10.3390/s23042281
Onwuka IS, Scinto LJ, Fugate DC. High-Resolution Estimation of Suspended Solids and Particulate Phosphorus Using Acoustic Devices in a Hydrologically Managed Canal in South Florida, USA. Sensors. 2023; 23(4):2281. https://doi.org/10.3390/s23042281
Chicago/Turabian StyleOnwuka, Ikechukwu S., Leonard J. Scinto, and David C. Fugate. 2023. "High-Resolution Estimation of Suspended Solids and Particulate Phosphorus Using Acoustic Devices in a Hydrologically Managed Canal in South Florida, USA" Sensors 23, no. 4: 2281. https://doi.org/10.3390/s23042281
APA StyleOnwuka, I. S., Scinto, L. J., & Fugate, D. C. (2023). High-Resolution Estimation of Suspended Solids and Particulate Phosphorus Using Acoustic Devices in a Hydrologically Managed Canal in South Florida, USA. Sensors, 23(4), 2281. https://doi.org/10.3390/s23042281