Effects of Particle Swarm Optimisation on a Hybrid Load Balancing Approach for Resource Optimisation in Internet of Things
Abstract
:1. Introduction
- An improved there-tiered framework for efficient resource optimisation in IoT. The framework, as opposed to existing frameworks, performs resource optimisation by placing equal importance on resource scheduling and resource allocation.
- A mathematical model incorporating the proposed framework. This model following the proposed framework takes into consideration the heterogeneous nature of IoT devices and harnesses their distributed nature to reduce nodal energy dissipation, subsequently prolonging the system’s lifespan by mitigating the quick death of nodes.
- An analysis of the simulation, depicting the effectiveness of the proposed model. The model’s ability to perform adequate load balancing generates results that illustrate its efficacy. Comparisons made with the current state of the art illustrates the superiority of the proposed model.
2. Related Work and Motivation
2.1. Related Work
Overview of the PSO, RR, and RB Algorithms
2.2. Resource Optimisation Problem and Motivation
2.2.1. Resource Optimisation Problem Statement
2.2.2. Motivation and Lapses
3. Proposed Solution
3.1. Model Description
3.2. Model Algorithm
Algorithm 1 PSO Algorithm for proposed model. |
1: Initialize position and velocity : |
2: Check particle’s position and velocity |
3: Evaluate current fitness |
4: Mapping of the updated position to the corresponding particles adjusting minimum and maximum position if necessary |
5: Obtain the fitness value of each particle |
6: if |
7: Update the velocity of each particle |
8: Update the position ) of the particle |
9: Update the fitness of each particle |
10: Repeat Step 5 to Step 9 until it reaches maximum number of iterations is reached. |
8: Particle with position closest to resource is designated cluster head |
9: Cluster head broadcasts its position to adjacent nodes and completes cluster creation |
4. Experiment and Analysis
4.1. Experimental Simulation Setup
4.2. Experimental Results and Analysis
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lanlan, K.; Ruey-Shun, C.; Wenliang, C.; Yeh-Cheng, C.; Yu-Xi, H. Mechanism analysis of non-inertial particle swarm optimisation for Internet of Things in edge computing. Eng. Appl. Artif. Intell. 2020, 94, 103803. [Google Scholar] [CrossRef]
- Qui, T.; Bolun, L.; Xiaobo, Z.; Houbing, S.; Ivan, L.; Jaime, L. A Novel Shortcut Addition Algorithm with Particle Swarm for Multisink Internet of Things. IEEE Trans. Ind. Inform. 2020, 16, 3566–3577. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.A.; Abdulkareem, K.H.; Jaber, M.M.; Nedoma, J.; Martinek, R.; Zmij, P. Delay Optimal Schemes for Internet of Things Applications in Heterogeneous Edge Cloud Computing Networks. Sensors 2022, 22, 5937. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Moghaddam, S.M.; O’Sullivan, M.; Unsworth, C.P.; Piraghaj, S.F.; Walker, C. Metrics for improving the management of Cloud environments — Load balancing using measures of Quality of Service, Service Level Agreement Violations and energy consumption. Future Gener. Comput. Syst. 2021, 123, 142–155. [Google Scholar] [CrossRef]
- Srinadh, V.; Rao, P.V.N. Implementation of Dynamic Resource Allocation using Adaptive Fuzzy Multi-Objective Genetic Algorithm for IoT based Cloud System. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 111–118. [Google Scholar] [CrossRef]
- Peng-Yeng, Y.; Jing-Yu, W. Optimal multiple-objective resource allocation using hybrid particle swarm optimisation and adaptive resource bounds technique. J. Comput. Appl. Math. 2008, 216, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.; Ambarani, K.J.; Thai, M.T. Optimizing Resource Allocation and VNF Embedding in RAN Slicing. arXiv 2022, arXiv:2207.11820. [Google Scholar] [CrossRef]
- Jooya, A.Z.; Baniasadi, A.; Analoui, M. History-aware, resource-based dynamic scheduling for heterogeneous multi-core processors. Iet Comput. Digit. Tech. 2011, 5, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.J.; Zhang, J.; Chung, H.S.H.; Chen, W.N.; Zhan, Z.H.; Li, Y.; Shi, Y.H. An Efficient Resource Allocation Scheme Using Particle Swarm Optimisation. IEEE Trans. Evol. Comput. 2012, 16, 801–816. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, H.; Tao, Q.; Fan, W.; Lin, T.; Xiao, Y. Noncyclic Scheduling of Multi-Cluster Tools With Residency Constraints Based on Pareto Optimisation. IEEE Trans. Semicond. Manuf. 2020, 33, 476–486. [Google Scholar] [CrossRef]
- Prasanth, A.; Jayachitra, S. A novel multi-objective optimisation strategy for enhancing quality of service in IoT-enabled WSN applications. Peer-Peer Netw. Appl. 2020, 13, 1905–1920. [Google Scholar] [CrossRef]
- Xueqiang, Y.; Shining, L.; Yun, L. A Novel Hierarchical Data Aggregation with Particle Swarm Optimisation for Internet of Things. Mob. Netw. Appl. 2019, 24, 1994–2001. [Google Scholar] [CrossRef]
- Al-Janabi, T.A.; Al-Raweshidy, H.S. Optimised clustering algorithm-based centralised architecture for load balancing in IoT network. In Proceedings of the 2017 International Symposium on Wireless Communication Systems (ISWCS), Bologna, Italy, 28–31 August 2017; pp. 269–274. [Google Scholar] [CrossRef]
- Lina, X.; O’ Hare, G.M.P.; Rem, C. A Smart and Balanced Energy-Efficient Multihop Clustering Algorithm (Smart-BEEM) for MIMO IoT Systems in Future Networks. Sensors 2017, 17, 1574. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Xiang, Z.; Zhao, P.; Taheri, J.; Gao, H.; Yin, J.; Zomaya, A.Y. Dynamical Resource Allocation in Edge for Trustable Internet-of-Things Systems: A Reinforcement Learning Method. IEEE Trans. Ind. Informatics 2020, 16, 6103–6113. [Google Scholar] [CrossRef]
- Wang, N.; Wang, J.S.; Zhu, L.F.; Wang, H.Y.; Wang, G. A Novel Dynamic Clustering Method by Integrating Marine Predators Algorithm and Particle Swarm Optimisation Algorithm. IEEE Access 2021, 9, 3557–3569. [Google Scholar] [CrossRef]
- Pratyay, K.; Prasanta, K.J. A novel differential evolution based clustering algorithm for wireless sensor networks. Appl. Soft Comput. 2014, 25, 414–425. [Google Scholar] [CrossRef]
- Le, H.; Hoang, D.; Poliah, R. S-Web: An Efficient and Self-organizing Wireless Sensor Networsk Model. In Lecture Notes in Computer Science, Proceedings of the Network-Based Information Systems, Turin, Italy, 1–5 September 2008; Takizawa, M., Barolli, L., Enokido, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 179–188. [Google Scholar] [CrossRef]
- Pal, R.; Sharma, A.K. FSEP-E: Enhanced stable election protocol based on fuzzy Logic for cluster head selection in WSNs. In Proceedings of the 2013 Sixth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2013; pp. 427–432. [Google Scholar] [CrossRef]
- Bi, F.; Zhou, H.; Zhu, M.; Wang, W. Economic benefit evaluation of water resources allocation in transboundary basins based on particle swarm optimisation algorithm and cooperative game model—A case study of Lancang-Mekong River Basin. PLoS ONE 2022, 17, e0265350. [Google Scholar] [CrossRef]
- Wan, X.; Wang, Z.; Wu, M.; Liu, X. H∞ State Estimation for Discrete-Time Nonlinear Singularly Perturbed Complex Networks Under the Round-Robin Protocol. IEEE Trans. Neural Networks Learn. Syst. 2019, 30, 415–426. [Google Scholar] [CrossRef]
- Jun, S.; Zidong, W.; Yugang, N. Static output-feedback sliding mode control under round-robin protocol. Int. J. Robust Nonlinear Control. 2018, 28, 5841–5857. [Google Scholar] [CrossRef]
- Hameed Abdulkareem, K.; Awad Mutlag, A.; Musa Dinar, A.; Frnda, J.; Abed Mohammed, M.; Hasan Zayr, F.; Lakhan, A.; Kadry, S.; Ali Khattak, H.; Nedoma, J. Smart Healthcare System for Severity Prediction and Critical Tasks Management of COVID-19 Patients in IoT-Fog Computing Environments. Comput. Intell. Neurosci. 2022, 2022, 5012962. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.A.; Elhoseny, M.; Alshehri, M.D.; Abdulkareem, K.H. Blockchain multi-objective optimisation approach-enabled secure and cost-efficient scheduling for the Internet of Medical Things (IoMT) in fog-cloud system. Soft Computing 2022, 26, 6429–6442. [Google Scholar] [CrossRef]
- Alatoun, K.; Matrouk, K.; Mohammed, M.A.; Nedoma, J.; Martinek, R.; Zmij, P. A Novel Low-Latency and Energy-Efficient Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud System. Sensors 2022, 22, 5327. [Google Scholar] [CrossRef] [PubMed]
- Lakhan, A.; Mohammed, M.A.; Garcia-Zapirain, B.; Nedoma, J.; Martinek, R.; Tiwari, P.; Kumar, N. Fully Homomorphic Enabled Secure Task Offloading and Scheduling System for Transport Applications. IEEE Trans. Veh. Technol. 2022, 71, 12140–12153. [Google Scholar] [CrossRef]
- Qiao, Z. Research on Optimisation Algorithm of Cloud Computing Resource Allocation for Internet of Things Engineering Based on Improved Ant Colony Algorithm. Math. Probl. Eng. 2022, 2022, 5632117. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Edge nodes | 1–100 |
Servers | 5 |
Number of simulation iterations | 20 |
Monitoring area for each cluster | 20 m × 20 m m |
Packet size | bits |
Message size | bits |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datiri, D.D.; Li, M. Effects of Particle Swarm Optimisation on a Hybrid Load Balancing Approach for Resource Optimisation in Internet of Things. Sensors 2023, 23, 2329. https://doi.org/10.3390/s23042329
Datiri DD, Li M. Effects of Particle Swarm Optimisation on a Hybrid Load Balancing Approach for Resource Optimisation in Internet of Things. Sensors. 2023; 23(4):2329. https://doi.org/10.3390/s23042329
Chicago/Turabian StyleDatiri, Dorcas Dachollom, and Maozhen Li. 2023. "Effects of Particle Swarm Optimisation on a Hybrid Load Balancing Approach for Resource Optimisation in Internet of Things" Sensors 23, no. 4: 2329. https://doi.org/10.3390/s23042329
APA StyleDatiri, D. D., & Li, M. (2023). Effects of Particle Swarm Optimisation on a Hybrid Load Balancing Approach for Resource Optimisation in Internet of Things. Sensors, 23(4), 2329. https://doi.org/10.3390/s23042329