Optical Methods of Methane Detection
Abstract
:1. Introduction
2. Methane Detection Methods
3. Methane Absorption Spectra
4. Non-Dispersive Sensors
5. Tunable Diode Laser Spectroscopy
- low minimum detection limits, high signal-to-noise ratio;
- high degree of specificity for the test gas. An example is the detection of methane in the presence of other hydrocarbons [22];
- speed of operation; the wavelength of diode lasers can be modulated at a frequency of 100 kHz and even MHz.
6. Cavity Ring-Down Spectroscopy
- P-CRDS (pulsed) method, in which pulsed lasers are used [69],
- CW-CRDS (Continuous Wave) method with continuous action lasers [70],
- CEAS method (Cavity Enhanced Absorption Spectroscopy) consisting of off-axis introduction of a radiation beam into the optical cavity [71],
- EW-CRDS method (Evanescent Cavity Ring-Down Spectroscopy), which uses the vanishing wave mechanism [72],
- F-CRDS (Fiber Cavity Ring-Down Spectroscopy) method [73],
- RSP method (Ring-Down Spectral Photography), i.e., a method with spectral decay photography [74].
7. Remote Methane Detection Systems
8. Photoacoustic Detection
9. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bridges, E.M.; Batjes, N.H. Soil gaseous emissions and global climatic change. Geography 1996, 81, 155–169. [Google Scholar]
- Saunois, M.; Jackson, R.B.; Bousquet, P.; Poulter, B.; Canadell, J.G. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 2016, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.J.; Frankenberg, C.; Kort, E.A. Interpreting contemporary trends in atmospheric methane. Proc. Nat. Acad. Sci. USA 2019, 116, 2805–2813. [Google Scholar] [CrossRef] [Green Version]
- Formisano, V.; Atreya, S.; Encrenaz, T.; Ignatiew, N.; Giuranna, M. Detection of methane in the atmosphere of Mars. Science 2004, 306, 1758–1761. [Google Scholar] [CrossRef] [Green Version]
- McKay, L.F.; Eastwood, M.; Brydon, W. Methane excretion in man—A study of breath, flatus, and faeces. Gut 1985, 26, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Aldhafeeri, T.; Tran, M.-K.; Vrolyk, R.; Pope, M.; Fowler, M. A review of methane gas detection sensors: Recent developments and future perspectives. Inventions 2020, 5, 28. [Google Scholar] [CrossRef]
- Sharpe, S.W.; Johnson, T.J.; Sams, R.L.; Chu, P.M.; Rhoderick, G.C.; Johnson, P.A. Gas-phase databases for quantitative infrared spectroscopy. Appl. Spec. 2004, 5, 1452–1461. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Camargue, A.; Champio, J.-P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer. 2009, 110, 533–572. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrov, S.; Gavrilov, G.; Kapralov, A.; Karandashov, S.; Matveev, B.; Sothikova, G.; Stus, N. Portable optoelectronic gas sensors operating in the mid-IR spectral range (λ = 3–5 μm). Proc. SPIE 2002, 4680, 188–190. [Google Scholar]
- Vargas-Rodrıguez, E.; Rutt, H.N. Design of CO, CO2 and CH4 gas sensors based on correlation spectroscopy using a Fabry–Perot interferometer. Sens. Actuators B 2009, 137, 410–419. [Google Scholar] [CrossRef]
- Cheng, W. Optimization of CIPS Based Opto-Electronic Gas Detector. Methane Detector. Ph.D. Thesis, Stony Brook University, Stony Brook, NY, USA, 2016. [Google Scholar]
- Wojtas, J.; Głuszek, A.; Hudzikowski, A.; Tittlel, F.K. Mid-infrared trace gas sensor technology based on intracavity quartz-enhanced photoacustic spectroscopy. Sensors 2017, 17, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikołajczyk, J.; Wojtas, J.; Bielecki, Z.; Stacewicz, T.; Szabral, D.; Magryta, P.; Prokopiuk, A.; Tkacz, A.; Panek, M. System of optoelectronic sensors for breath analysis. Metrol. Meas. Syst. 2016, 23, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Wojtas, J.; Mikołajczyk, J.; Bielecki, Z. Aspect of the applications of cavity enhanced spectroscopy to nitrogen oxides detection. Sensors 2013, 17, 7570–7598. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.G. Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 1998, 9, 545–562. [Google Scholar] [CrossRef] [Green Version]
- Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mucke, R.B. Near and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 2002, 37, 101–114. [Google Scholar] [CrossRef]
- Sigrist, M.W.; Bartlome, R.; Marinov, D.; Rey, J.M.; Vogler, D.E.; Wachter, H. Trace gas monitoring with infrared laser-based detection schemes. Appl. Phys. B 2008, 90, 289–300. [Google Scholar] [CrossRef]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D.; Shorter, J.H.; Herndon, S.; Wood, E.; Wehr, R. Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng. 2010, 49, 111124. [Google Scholar] [CrossRef]
- Liu, K.; Wang, L.; Tan, T.; Wang, G.; Zhang, W.; Chen, W.; Gao, X. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cel. Sens. Actuators B 2015, 220, 1000–1005. [Google Scholar] [CrossRef] [Green Version]
- Bahr, M.S.; Baumann, B.; Wolf, M. Determining the most suitable spectral range for TDLS—A quantitative approach. J. Quant. Spectrosc. Radiat. Transf. 2022, 286, 108216. [Google Scholar] [CrossRef]
- Pyun, S.H.; Cho, J.; Davidson, D.F.; Hanson, R.K. Interference-free mid-IR laser absorption detection of methane. Meas. Sci. Technol. 2011, 22, 25303. [Google Scholar] [CrossRef]
- Lackner, M.; Totschnig, G.; Winter, F.; Ortsiefer, M.; Amann, M.-C.; Shau, R.; Rosskopf, J. Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate. Meas. Sci. Technol. 2003, 14, 101–106. [Google Scholar] [CrossRef]
- Liu, J.T.C.; Jeffries, J.B.; Hanson, R.K. Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows. Appl. Phys. B 2004, 78, 503–511. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci Technol. 2013, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Durry, G.; Li, J.S.; Vinogradov, I.; Titov, A.; Joly, L.; Cousin, J.; Decarpenterie, T.; Amarouche, N.; Liu, X.; Parvitte, B.; et al. Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission. Appl. Phys. B 2010, 99, 339–351. [Google Scholar] [CrossRef]
- Suchalkin, S.; Belenky, G.; Belkin, M.A. Rapidly tunable quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1200509. [Google Scholar] [CrossRef]
- Meyer, J.; Vurgaftman, I. Quantum and interband cascade lasers. Opt. Eng 2010, 49, 111101. [Google Scholar] [CrossRef] [Green Version]
- Curl, R.F.; Capasso, F.; Gmachl, C.; Kosterev, A.A.; McManus, B.; Lewicki, R.; Pusharsky, M.; Wysocki, G.; Tittel, F. Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 2010, 487, 1–18. [Google Scholar] [CrossRef]
- Capasso, F. High-performance mid infrared quantum cascade lasers. Opt. Eng. 2010, 49, 111102. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Bewley, W.W.; Canedy, C.L.; Chul, S.K.; Mijin, K.; Merritt, C.D.; Abell, J.; Meyer, J. Interband cascade lasers with low threshold power and high output powers. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1200210. [Google Scholar] [CrossRef]
- Bauer, A.; Langer, F.; Dallner, M.; Kamp, M.; Motyka, M.; Sek, G.; Ryczko, K.; Misiewicz, J.; Höfling, S.; Forchel, A. Emission wavelength tuning of interband cascade lasers in the 3–4 μm spectral range. Appl. Phys. Lett. 2009, 95, 251103. [Google Scholar] [CrossRef]
- Canedy, C.L.; Kim, C.S.; Merritt, C.D.; Bewley, W.W.; Vurgaftman, I.; Meyer, J.R.; Kim, M. Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures. Appl. Phys. Lett. 2015, 107, 121102. [Google Scholar] [CrossRef]
- Nähle, L.; Hildebrandt, L.; Kamp, M.; Höfling, S. ICLs open opportunities for mid-IR sensing. Laser Focus World 2013, 49, 70–73. [Google Scholar]
- Nguyen Ba, T.; Triki, M.; Desbrosses, G.; Vicet, A. Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode. Rev. Sci. Instrum. 2015, 86, 023111. [Google Scholar] [CrossRef] [PubMed]
- Vurgaftman, I.; Bewley, W.W.; Canedy, C.L.; Kim, C.S.; Kim, M.; Merritt, C.D.; Abell, J.; Lindle, J.R.; Meyer, J.R. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. Nat. Commun. 2011, 2, 585. [Google Scholar] [CrossRef] [Green Version]
- Nadezhdinskii, A.; Berezin, A.; Chernin, S.; Ershov, O.; Kutnnyak, V. High sensitivity methane analyzer based on tuned near infrared diode laser. Spectrochim. Acta Part A 1999, 55, 2083–2089. [Google Scholar] [CrossRef]
- Forrest, G.T. Tunable diode laser measurement of methane, ethane, and water in cigarete smoke. Appl. Opt. 1980, 19, 2094–2096. [Google Scholar] [CrossRef]
- Cassidy, D.T.; Reid, J. Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 1982, 21, 1185. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, D.T. Trace gas detection using 1.3 μm InGaAsP diode laser transmitter modules. Appl. Opt. 1988, 27, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Defreez, R.K.; Elliott, R.A. External grating-tuned dual-diode-laser source for remote detection of coal gas methane. J. Opt. Soc. Am. 1983, 73, 1854. [Google Scholar]
- Reid, J.; Sinclair, R.L.; Grant, W.B.; Menzies, R.T. High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers. Opt. Quantum Electron. 1985, 17, 31–39. [Google Scholar] [CrossRef]
- Koga, R.; Kosaka, M.; Sano, H. Field methane tracking with a portable and real-time open-gas monitor based on a cw-driven Pb-salt diode laser. Opt. Laser Technol. 1985, 17, 139–144. [Google Scholar] [CrossRef]
- Mohebati, A.; King, T.A. Remote detection of gases by diode laser spectroscopy. J. Mod. Opt. 1988, 35, 319–324. [Google Scholar] [CrossRef]
- Chan, K.; Ito, H.; Inaba, H. 10 km-long-fibre-optic remote sensing of CH4 gas by near infrared absorption. Appl. Phys. B 1985, 38, 11. [Google Scholar] [CrossRef]
- Webster, C.R.; May, R.D.; Trimble, C.A.; Chave Kendall, R.G. Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2 and HNO3. Appl. Opt. 1994, 454, 33. [Google Scholar]
- Smith, M.W. Method and results for optimizing the MOPITT methane bandpass. Appl. Opt. 1997, 36, 4285. [Google Scholar] [CrossRef]
- Sussman, R.; Schafer, K. Infrared spectroscopy of tropospheric trace gases: Combined analysis of horizontal and vertical column abundances. Appl. Opt. 1997, 36, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.; Tran, N.H.; Bretenaker, F.; Le Foch, A. Differential absorption measurements of methane with two spatially resolved laser lines. Appl. Opt. 1997, 33, 3261–3264. [Google Scholar] [CrossRef]
- Uehara, K.; Tai, H. Remote detection of methane with 1.66-microm diode laser. Appl. Opt. 1992, 31, 809–814. [Google Scholar] [CrossRef]
- Iseki, T.; Tai, H.; Kimura, K. A portable remote methane sensor using a tunable diode laser. Meas. Sci. Technol. 2000, 11, 594–602. [Google Scholar] [CrossRef]
- Chou, S.; Baer, D.S.; Hanson, R.K. Diode-laser absorption measurement of CH3Cl and CH4 near 1.65 μm. Appl. Opt. 1997, 36, 3288. [Google Scholar] [CrossRef] [PubMed]
- Ikuta, K.; Yoshikane, N.; Vasa, N.; Oki, Y.; Maeda, M.; Uchiumi, M.; Tsumura, Y.; Nakagawa, J.; Kawada, N. Differential absorption lidar at 1.67 μm for remote sensing of methane leakage. Jpn. J. Appl. Phys. 1999, 38, 110–114. [Google Scholar] [CrossRef]
- Schiff, H.I.; Mackay, G.I.; Bechara, J. The use of tunable diode laser absorption spectroscopy for atmospheric measurements. Res. Chem. Intermed. 1994, 20, 525–556. [Google Scholar] [CrossRef]
- Maddaloni, P.; Malara, P.; Gagliardi, G.; de Natale, P. Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm. Appl. Phys. B 2006, 85, 219–222. [Google Scholar] [CrossRef]
- Borri, S.; Bartalini, S.; de Natale, P.; Inguscio, M.; Gmachl, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Frequency modulation spectroscopy by means of quantum-cascade lasers. Appl. Phys. B 2006, 85, 223. [Google Scholar] [CrossRef]
- Mcmanus, J.B.; Shorter, H.; Nelson, D.D.; Zahniser, M.S.; Glenn, D.E.; McGovern, R.M. Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Appl. Phys. B 2008, 92, 387–392. [Google Scholar] [CrossRef]
- Pitt, J.R.; Le Breton, M.; Allen, G.; Percival, C.J.; Gallagher, M.W.; Bauguitte, S.J.-B.; O’Shea, S.J.; Muller, J.B.A.; Zahniser, M.S.; Pyle, J.; et al. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS). Atmos. Meas. Tech. 2016, 9, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.D.; McManus, B.; Urbanski, S.; Herndon, S.; Zahniser, M.S. High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled midinfrared quantum cascade lasers and detectors. Spectrochim. Acta A 2004, 60, 3325–3335. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Tittel, F.K.; Li, C.; Sanchez, N.P.; Wu, H.; Zheng, C.; Yu, Y.; Sampaolo, A.; Griffin, R.J. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express 2016, 24, A52. [Google Scholar] [CrossRef] [Green Version]
- Marchand, L.; Wilkens, L.; Harwood, L.R.; Cooney, P.R.V. Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: Circadian patterns of excretion. Environ. Health Perspect. 1992, 98, 199–202. [Google Scholar] [CrossRef]
- Winkowski, M.; Stacewicz, T. Detection of ethane, methane, formaldehyde and water vapor in the 3.33 µm range. Metrol. Meas. Syst. 2022, 29, 271–282. [Google Scholar]
- Normand, E.; McCulloch, M.; Duxbury, G.; Langford, N. Fast, real-time spectrometer based on a pulsed quantum-cascade laser. Opt. Lett. 2003, 28, 16–18. [Google Scholar] [CrossRef]
- McCulloch, M.; Langford, N.; Duxbury, G. Real-time trace level detection of carbon dioxide and ethylene in car exhaust gases. Appl. Opt. 2005, 44, 2887–2894. [Google Scholar] [CrossRef]
- O’Keefe, A.; Deacon, D.A.G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 1988, 59, 2544–2551. [Google Scholar] [CrossRef] [Green Version]
- Paldus, B.A.; Kachanov, A.A. An historical overview of cavity-enhanced methods. Can. J. Phys. 2005, 83, 975–999. [Google Scholar] [CrossRef]
- Foltynowicz, A.; Schmidt, F.M.; Ma, W.; Axner, O. Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential. Appl. Phys. B 2008, 92, 313–316. [Google Scholar] [CrossRef]
- Berden, G.; Peeters, R.; Meijer, G. Cavity ring-down spectroscopy: Experimental schemes and applications. Int. Rev. Phys. Chem. 2000, 19, 565–607. [Google Scholar] [CrossRef]
- Brown, S.S.; Ravishankhara, A.R.; Stark, H. Simultaneous kinetic and ring-down: Rate coefficients from single cavity loss temporal profiles. J. Phys. Chem. A 2000, 104, 7044–7052. [Google Scholar] [CrossRef]
- He, Y.; Orr, B.J. Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity. Chem. Phys. Lett. 2000, 319, 131–137. [Google Scholar] [CrossRef]
- Romanini, D.; Kachanov, A.A.; Sadeghi, N.; Stoeckel, F. Diode laser cavity ring down spectroscopy. Chem. Phys. Lett. 1997, 270, 538–545. [Google Scholar] [CrossRef]
- Pipino, A.C.R. Ultrasensitive surface spectroscopy with a miniature optical resonator. Phys. Rev. Lett. 1999, 83, 3093. [Google Scholar] [CrossRef]
- Atherton, K.J.; Yu, H.; Stewart, G.; Culshaw, B. Gas detection with fibre amplifiers by intra-cavity and cavity ring-down absorption. Meas. Sci. Technol. 2004, 15, 1621–1628. [Google Scholar]
- Scherer, J.J. Ringdown spectral photography. Chem. Phys. Lett. 1998, 292, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, D.J.; Orr-Ewing, A.J. A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air. Appl. Phys. B 2011, 102, 879–890. [Google Scholar] [CrossRef]
- Romanini, D.; Chenevier, M.; Kassi, S.; Schmidt, M.; Valant, C.; Ramonet, M.; Lopez, J.; Jost, H.-J. Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane. Appl. Phys. B 2006, 83, 659–667. [Google Scholar] [CrossRef]
- Barry, H.R.; Corner, L.; Hancock, G.; Peverall, R.; Ritchie, G.A.D. Cavity-enhanced skorpion spectroscopy of methane at 1.73 μm. Chem. Phys. Lett. 2001, 333, 285–289. [Google Scholar] [CrossRef]
- Manfred, K.M.; Ritchie, G.A.D.; Lang, N.; Ropcke, J.; van Helden, J.H. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser. Appl. Phys. Lett. 2015, 106, 221106. [Google Scholar] [CrossRef]
- Lang, N.; Macherius, U.; Wiese, M.; Zimmermann, H.; Ropcke, J.; van Helden, J.H. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy. Opt. Express 2016, 24, 536–543. [Google Scholar] [CrossRef]
- Kassi, S.; Chenevier, M.; Gianfrani, L.; Salhi, A.; Rouillard, Y.; Ouvrard, A.; Romanini, D. Looking into the volcano with a mid-IR DFB diode laser and cavity enhanced absorption spectroscopy. Opt. Express 2006, 14, 11442–11452. [Google Scholar] [CrossRef]
- Bell, C.L.; Hancock, G.; Peverall, R.; Ritchie, G.A.D.; Van Helden, J.H.; Van Leeuwen, N.J. Characterization of an external cavity diode laser based ring cavity NICE-OHMS system. Opt. Express 2009, 17, 9834–9839. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yu, Z.; Du, Z.; Ji, Y.; Liu, C. Standoff chemical detection using laser absorption spectroscopy: A review. Remote Sens. 2020, 12, 2771. [Google Scholar] [CrossRef]
- Bogue, R. Remote chemical sensing: A review of techniques and recent developments. Sens. Rev. 2018, 38, 453–457. [Google Scholar] [CrossRef]
- Innocenti, F.; Robinson, R.; Gardiner, T.; Finlayson, A.; Connor, A. Differential Absorption Lidar (DIAL) measurements of landfill methane emissions. Remote Sens. 2017, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, S.; Sadovnikov, S.; Kharchenko, O.; Kravtsova, N. Remote sensing of atmospheric methane with IR OPO lidar system. Atmosphere 2020, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Ehret, G.; Kiemle, C.; Wirth, M.; Amediek, A.; Fix, A.; Houweling, S. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis. Appl. Phys. B Lasers Opt. 2008, 90, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Wagner, G.A.; Plusquellic, D.F. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4 and H2O near 1.6 μm. Appl. Opt. 2016, 55, 6292–6310. [Google Scholar] [CrossRef]
- Refaat, T.F.; Ismail, S.; Nehrir, A.R.; Hair, J.W.; Crawford, J.H.; Leifer, I.; Shuman, T. Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms. Opt. Express 2013, 21, 30415–30432. [Google Scholar] [CrossRef]
- Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Budenbender, C.; Quatrevalet, M.; Kiemle, C.; Gerbig, C. CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: Measurement performance and quantification of strong point source emissions. Appl. Opt. 2017, 56, 5182–5197. [Google Scholar] [CrossRef] [PubMed]
- Yerasi, A.; Tandy, W.D.; Emery, W.J.; Barton-Grimley, R.A. Comparing the theoretical performances of 1.65-and 3.3-μm differential absorption lidar systems used for airborne remote sensing of natural gas leaks. J. Appl. Remote Sens. 2018, 12, 16. [Google Scholar]
- Ehret, G.; Bousquet, P.; Pierangelo, C.; Alpers, M.; Millet, B.; Abshire, J.B.; Bovensmann, H.; Burrows, J.P.; Chevallier, F.; Ciais, P.; et al. MERLIN: A French-German space lidar mission dedicated to atmospheric methane. Remote Sens. 2017, 9, 29. [Google Scholar]
- Ro, K.S.; Johnson, M.H.; Varma, R.M.; Hashmonay, R.A.; Hunt, P. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method. J. Environ. Sci. Health A 2009, 44, 1011–1018. [Google Scholar] [CrossRef]
- Plant, G.; Nikodem, M.; Mulhall, P.; Varner, R.K.; Sonnenfroh, D.; Wysocki, G. Field test of a remote multi-path CLaDS methane. Sensors 2015, 15, 21315–21326. [Google Scholar] [CrossRef] [Green Version]
- van Well, B.; Murray, S.; Hodgkinson, J.; Pride, R.; Strzoda, R.; Gibson, G.; Padgett, M. An open-path, hand-held laser system for the detection of methane gas. J. Opt. Soc. Am. A 2005, 7, S420. [Google Scholar]
- Gao, X.; Fan, H.; Huang, T.; Wang, X.; Bao, J.; Li, X.; Huang, W.; Zhang, W. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 65, 133–138. [Google Scholar] [CrossRef]
- Diaz, A.; Thomas, B.; Castillo, P.; Gross, B.; Moshary, F. Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor. Appl. Phys. B Lasers Opt. 2016, 122, 121. [Google Scholar] [CrossRef]
- Kumar, D.; Gupta, S.; Kumar, S.; Sharma, R.C.; Soni, R.K. Open-path measurement of ozone and methane gases using quartz-enhanced photoacoustic spectroscopy. Spectrosc. Lett. 2016, 49, 469–476. [Google Scholar] [CrossRef]
- Meng, L.; Fix, A.; Wirth, M.; Høgstedt, L.; Tidemand-Lichtenberg, P.; Pedersen, C.; Rodrigo, P.J. Upconversion detector for range-resolved DIAL measurement of atmospheric CH4. Opt. Express 2018, 26, 3850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierangelo, C.; Millet, B.; Estervel, F.; Alpers, M.; Ehret, G.; Flamant, P.; Berthier, S.; Gilbert, F.; Chomette, O.; Edouart, D.; et al. MERLIN (Methane Remote Sensing Lidar Mission): An overview. EPJ Weber Conf. 2016, 4, 26001. [Google Scholar] [CrossRef] [Green Version]
- Babilotte, A.; Lagier, T.; Fiani, E.; Taramini, V. Fugitive methane emissions from landfills: Field comparison of five methods on a french landfill. J. Environ. Eng. 2010, 136, 777–784. [Google Scholar] [CrossRef]
- Innocenti, F.; Robinson, R.A.; Gardiner, T.D.; Tompkins, J.; Smith, S.; Lowry, D.; Fisher, R. Measurements of Methane Emissions and Surface Methane Oxidation at Landfills—WR1125; Report Prepared for Defra by NPL; Defra: London, UK, 2013; p. 89. [Google Scholar]
- Strahl, T.; Herbst, J.; Lambrecht, A.; Maier, E.; Steinebrunner, J.; Wöllenstein, J. Methane leak detection by tunable laser spectroscopy and mid-infrared imaging. Appl. Opt. 2021, 60, C68–C75. [Google Scholar] [CrossRef] [PubMed]
- Yacovitch, T.I.; Daube, C.; Herndon, S.C. Methane emissions from offshore oil and gas platforms in the Gulf of Mexico. Environ. Sci. Technol. 2020, 54, 3530–3538. [Google Scholar] [CrossRef]
- Elia, A.; Lugara, P.M.; Di Franco, C.; Spagnolo, V. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 2009, 9, 9616–9628. [Google Scholar] [CrossRef] [Green Version]
- Zoltan, B.; Andrea, P.; Gabor, S. Photoacoustic instruments for practical applications: Present, potentials, and future challenges. Appl. Spectrosc. Rev. 2011, 46, 1–37. [Google Scholar]
- Kachanov, A.; Koulikov, S.; Tittel, F.K. Cavity enhanced optical feedback assisted photoacoustic spectroscopy with a 10.4 microns external-cavity quantum cascade laser. Appl. Phys. B 2013, 110, 47–56. [Google Scholar] [CrossRef]
- Zeninari, V.; Kapitanov, V.A.; Courtois, D.; Ponomarev, Y.N. Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection. Infrared Phys. Technol. 1999, 40, 1–23. [Google Scholar] [CrossRef]
- Miklos, A.; Hess, P.; Bozoki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Kosterev, A.A.; Tittel, F.K.; Serebryakov, D.V.; Malinovsky, A.L.; Morozov, I.V. Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 2005, 76, 043105. [Google Scholar] [CrossRef] [Green Version]
- Lewicki, R.; Wysocki, G.; Kosterev, A.A.; Tittel, F.K. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B 2007, 87, 157–162. [Google Scholar] [CrossRef]
- Adamson, B.D.; Sader, J.E.; Bieske, E.J. Photoacoustic detection of gases using microcantilevers. J. Appl. Phys. 2009, 106, 114510. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, V.; Fonsen, J.; Roth, K.; Kauppinen, J. Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source. Appl. Phys. B 2007, 86, 451–454. [Google Scholar] [CrossRef]
- Hollenbeck, D.; Zulevic, D.; Chen, Y. Advanced leak detection and quantification of methane emissions using sUAS. Drones 2021, 5, 117. [Google Scholar] [CrossRef]
- Iwaszenko, S.; Kalisz, P.; Słota, M.; Rudzki, A. Detection of natural gas leakages using a laser-based methane sensor and UAV. Remote Sens. 2021, 13, 510. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Concentration range | 0–2% |
Resolution | 10 ppm |
Absolute error [ppm] | ± (50 + 0.05 C) |
Scale drift | 0.2% |
Analysis time | <40 s |
Dimensions [mm] | 150 × 80 × 60 |
Weight | 300 g |
Parameters | Values |
---|---|
Concentration range [ppm] | 1–10,000 |
Sensitivity [ppm] | 0.1 |
Relative error [%] | ± 5 |
Selectivity | methane-butane 4000:1 |
Measuring time [s] | 3 |
Dimensions [mm] | 400 × 240 × 200 |
Weight | 4 kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwaśny, M.; Bombalska, A. Optical Methods of Methane Detection. Sensors 2023, 23, 2834. https://doi.org/10.3390/s23052834
Kwaśny M, Bombalska A. Optical Methods of Methane Detection. Sensors. 2023; 23(5):2834. https://doi.org/10.3390/s23052834
Chicago/Turabian StyleKwaśny, Mirosław, and Aneta Bombalska. 2023. "Optical Methods of Methane Detection" Sensors 23, no. 5: 2834. https://doi.org/10.3390/s23052834
APA StyleKwaśny, M., & Bombalska, A. (2023). Optical Methods of Methane Detection. Sensors, 23(5), 2834. https://doi.org/10.3390/s23052834