An Integrated Single-Beam Three-Axis High-Sensitivity Magnetometer
Abstract
:1. Introduction
2. Theory and Numerical Analysis
2.1. Setup
2.2. Principle of the AM
2.3. Numerical Analysis
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romalis, M.; Griffith, W.; Jacobs, J.; Fortson, E. New limit on the permanent electric dipole moment of 199 Hg. Phys. Rev. Lett. 2001, 86, 2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bison, G.; Wynands, R.; Weis, A. A laser-pumped magnetometer for the mapping of human cardiomagnetic fields. Appl. Phys. B 2003, 76, 325–328. [Google Scholar] [CrossRef]
- Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 2017, 20, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Renne, P.R.; Onstott, T.C. Laser-selective demagnetization: A new technique in paleomagnetism and rock magnetism. Science 1988, 242, 1152–1155. [Google Scholar] [CrossRef] [PubMed]
- Carreon, H. Fretting damage assessment in Ti-6Al-4V by magnetic sensing. Wear 2008, 265, 255–260. [Google Scholar] [CrossRef]
- Životskỳ, O.; Postava, K.; Kraus, L.; Jirásková, Y.; Juraszek, J.; Teillet, J.; Barčová, K.; Švec, P.; Janičkovič, D.; Pištora, J. Surface and bulk magnetic properties of as-quenched FeNbB ribbons. J. Magn. Magn. Mater. 2008, 320, 1535–1540. [Google Scholar] [CrossRef]
- Kominis, I.; Kornack, T.; Allred, J.; Romalis, M.V. A subfemtotesla multichannel atomic magnetometer. Nature 2003, 422, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Brookes, M.J.; Boto, E.; Rea, M.; Shah, V.; Osborne, J.; Holmes, N.; Hill, R.M.; Leggett, J.; Rhodes, N.; Bowtell, R. Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage 2021, 236, 118025. [Google Scholar] [CrossRef] [PubMed]
- Afach, S.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Grujić, Z.; Hayen, L.; Hélaine, V.; Kasprzak, M.; Kirch, K.; et al. Highly stable atomic vector magnetometer based on free spin precession. Opt. Express 2015, 23, 22108–22115. [Google Scholar] [PubMed] [Green Version]
- Patton, B.; Zhivun, E.; Hovde, D.; Budker, D. All-optical vector atomic magnetometer. Phys. Rev. Lett. 2014, 113, 013001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, K.; Yudin, V.I.; Taichenachev, A.V.; Novikova, I.; Mikhailov, E.E. Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor. Phys. Rev. A 2011, 83, 015801. [Google Scholar] [CrossRef] [Green Version]
- Lenci, L.; Auyuanet, A.; Barreiro, S.; Valente, P.; Lezama, A.; Failache, H. Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor. Phys. Rev. A 2014, 89, 043836. [Google Scholar] [CrossRef] [Green Version]
- Seltzer, S.; Romalis, M. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Appl. Phys. Lett. 2004, 85, 4804–4806. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Deng, Y.; Wang, X.; Lu, H.; Liu, Y. Miniature Wide-Range Three-Axis Vector Atomic Magnetometer. IEEE Sens. J. 2021, 21, 23943–23948. [Google Scholar] [CrossRef]
- Tang, J.; Zhai, Y.; Cao, L.; Zhang, Y.; Li, L.; Zhao, B.; Zhou, B.; Han, B.; Liu, G. High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field measurement. Opt. Express 2021, 29, 15641–15652. [Google Scholar] [CrossRef] [PubMed]
- Boto, E.; Shah, V.; Hill, R.M.; Rhodes, N.; Osborne, J.; Doyle, C.; Holmes, N.; Rea, M.; Leggett, J.; Bowtell, R.; et al. Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: Feasibility and application in children. NeuroImage 2022, 252, 119027. [Google Scholar] [CrossRef] [PubMed]
Normalized Response | X | Y | Z |
---|---|---|---|
Bx applied | 1 | 0.0086 | 0.0224 |
By applied | 0.0263 | 1 | 0.0059 |
Bz applied | 0.0288 | 0.0022 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Xu, Z.; He, X.; Yin, C.; Kong, M.; Zhang, X.; Ruan, Y.; Li, K.; Lin, Q. An Integrated Single-Beam Three-Axis High-Sensitivity Magnetometer. Sensors 2023, 23, 3148. https://doi.org/10.3390/s23063148
Su S, Xu Z, He X, Yin C, Kong M, Zhang X, Ruan Y, Li K, Lin Q. An Integrated Single-Beam Three-Axis High-Sensitivity Magnetometer. Sensors. 2023; 23(6):3148. https://doi.org/10.3390/s23063148
Chicago/Turabian StyleSu, Shengran, Zhenyuan Xu, Xiang He, Chanling Yin, Miao Kong, Xuyuan Zhang, Yi Ruan, Kan Li, and Qiang Lin. 2023. "An Integrated Single-Beam Three-Axis High-Sensitivity Magnetometer" Sensors 23, no. 6: 3148. https://doi.org/10.3390/s23063148
APA StyleSu, S., Xu, Z., He, X., Yin, C., Kong, M., Zhang, X., Ruan, Y., Li, K., & Lin, Q. (2023). An Integrated Single-Beam Three-Axis High-Sensitivity Magnetometer. Sensors, 23(6), 3148. https://doi.org/10.3390/s23063148