Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferguson, B.; Zhang, X.C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Negrello, M.; Hopwood, R.; De Zotti, G.; Cooray, A.; Verma, A.; Bock, J.; Frayer, D.T.; Gurwell, M.A.; Omont, A.; Neri, R.; et al. The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies. Science 2010, 330, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cakmakyapan, S.; Lin, Y.J.; Javadi, H.; Jarrahi, M. Room-temperature heterodyne terahertz detection with quantum-level sensitivity. Nat. Astron 2019, 3, 977–982. [Google Scholar] [CrossRef]
- Lara-Avila, S.; Danilov, A.; Golubev, D.; He, H.; Kim, K.H.; Yakimova, R.; Lombardi, F.; Bauch, T.; Cherednichenko, S.; Kubatkin, S. Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene. Nat. Astron 2019, 3, 983–988. [Google Scholar] [CrossRef]
- Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; et al. Wireless sub-THz communication system with high data rate. Nat. Photonics 2013, 7, 977–981. [Google Scholar] [CrossRef]
- Mueller, T.; Xia, F.N.A.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Gupta, N.; Kedia, J.; Sharma, A. Emerging nanostructured infrared absorbers enabling cost-effective image sensing: A review. Opt. Eng. 2021, 60, 090901. [Google Scholar] [CrossRef]
- Martyniuk, P.; Rogalski, A.; Krishna, S. Interband Quantum Cascade Infrared Photodetectors: Current Status and Future Trends. Phys. Rev. Appl. 2022, 17, 027001. [Google Scholar] [CrossRef]
- Rogalski, A. Scaling infrared detectors-status and outlook. Rep. Prog. Phys. 2022, 85, 126501. [Google Scholar] [CrossRef]
- Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W. Trends in Performance Limits of the HOT Infrared Photodetectors. Appl. Sci. 2021, 11, 501. [Google Scholar] [CrossRef]
- Sun, Y.F.; Sun, J.D.; Zhou, Y.; Tan, R.B.; Zeng, C.H.; Xue, W.; Qin, H.; Zhang, B.S.; Wu, D.M. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas. Appl. Phys. Lett. 2011, 98, 252103. [Google Scholar] [CrossRef]
- Sun, J.D.; Sun, Y.F.; Wu, D.M.; Cai, Y.; Qin, H.; Zhang, B.S. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 2012, 100, 013506. [Google Scholar] [CrossRef]
- Jin, M.; Wang, Y.; Chai, M.; Chen, C.; Zhao, Z.; He, T. Terahertz Detectors Based on Carbon Nanomaterials. Adv. Funct Mater. 2021, 32, 2107499. [Google Scholar] [CrossRef]
- Sizov, F.F.; Reva, V.P.; Golenkov, A.G.; Zabudsky, V.V. Uncooled Detectors Challenges for THz/sub-THz Arrays Imaging. J. Infrared Millim Te 2011, 32, 1192–1206. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.L.; Wang, L.; Chen, X.S.; Liu, C.L.; Tang, W.W.; Guo, C.; Wang, J.; Lu, W. Graphene-based broadband terahertz detector integrated with a square-spiral antenna. Opt. Lett. 2018, 43, 1647–1650. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Morozov, S.V.; Mohinddin, T.M.G.; Ponomarenko, L.A.; Elias, D.C.; Yang, R.; Barbolina, I.I.; Blake, P.; Booth, T.J.; Jiang, D. Electronic Properties of Graphene; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Deng, X.Q.; Wang, Y.X.; Zhao, Z.R.; Chen, Z.Q.; Sun, J.L. Terahertz-induced photothermoelectric response in graphene-metal contact structures. J. Phys. D Appl. Phys. 2016, 49, 425101. [Google Scholar] [CrossRef]
- Wei, Z.; Ma, R.; Chen, Q.; Xia, M.; Ng, J.; Wang, A.; Xie, Y.H. The electro-mechanical responses of suspended graphene ribbons for electrostatic discharge applications. Appl. Phys. Lett. 2016, 108, 1304. [Google Scholar] [CrossRef]
- Spirito, D.; Coquillat, D.; De Bonis, S.L.; Lombardo, A.; Bruna, M.; Ferrari, A.C.; Pellegrini, V.; Tredicucci, A.; Knap, W.; Vitiello, M.S. High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 2014, 104, 061111. [Google Scholar] [CrossRef]
- Tong, J.Y.; Muthee, M.; Chen, S.Y.; Yngvesson, S.K.; Yan, J. Antenna Enhanced Graphene THz Emitter and Detector. Nano Lett. 2015, 15, 5295–5301. [Google Scholar] [CrossRef] [PubMed]
- Ryzhii, V.; Ryzhii, M.; Shur, M.S.; Mitin, V.; Satou, A.; Otsuji, T. Resonant plasmonic terahertz detection in graphene split-gate field-effect transistors with lateral p-n junctions. J. Phys. D Appl. Phys. 2016, 49, 315103. [Google Scholar] [CrossRef]
- Gouider, F.; Salman, M.; Gothlich, M.; Schmidt, H.; Ahlers, F.J.; Haug, R.; Nachtwei, G. Terahertz Detectors based on graphene. J. Phys. Conf. Ser. 2013, 456, 012011. [Google Scholar] [CrossRef]
- Yang, X.X.; Vorobiev, A.; Generalov, A.; Andersson, M.A.; Stake, J. A flexible graphene terahertz detector. Appl. Phys. Lett. 2017, 111, 021102. [Google Scholar] [CrossRef]
- Aziz, A.A.A.; Abdalla, M.A.; Ibrahim, A.A. Enhanced Gain Tunable Two Elements Antenna Array Based on Graphene. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 471–472. [Google Scholar]
- Liu, Y.-Q.; Li, L.; Yin, H. Long-Range Spoof Surface Plasmons(LRSSP) on the Asymmetric Double Metal Gratings. IEEE Photonics J. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Li, L.; Yin, H. Surface plasmon dispersion and modes on the graphene metasurface with periodical ribbon arrays. Mater. Res. Express 2020, 7, 075801. [Google Scholar] [CrossRef]
- Asgari, M.; Riccardi, E.; Balci, O.; De Fazio, D.; Shinde, S.M.; Zhang, J.C.; Mignuzzi, S.; Koppens, F.H.L.; Ferrari, A.C.; Viti, L.; et al. Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. Acs Nano 2021, 15, 17966–17976. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.X.; Zhao, Z.R. Monolithic Metamaterial-Integrated Graphene Terahertz Photodetector with Wavelength and Polarization Selectivity. Acs Nano 2022, 16, 17263–17273. [Google Scholar] [CrossRef]
- Fakharian, M.M. A graphene-based multi-functional terahertz antenna. Optik 2022, 251, 168431. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. -Rev. Sect. Phys. Lett. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Wang, L.; Han, L.; Guo, W.; Zhang, L.; Yao, C.; Chen, Z.; Chen, Y.; Guo, C.; Zhang, K.; Kuo, C.N.; et al. Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light Sci. Appl. 2022, 11, 53. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, Z.; Zhang, L.; Chen, Y.; Wang, D.; Jiang, M.; D’Olimpio, G.; Han, L.; Yao, C.; Chen, Z.; et al. Ultrasensitive Self-Driven Terahertz Photodetectors Based on Low-Energy Type-II Dirac Fermions and Related Van der Waals Heterojunctions. Small 2023, 19, e2205329. [Google Scholar] [CrossRef]
- Xu, H.; Guo, C.; Zhang, J.Z.; Guo, W.L.; Hu, W.D.; Wang, L.; Chen, G.; Chen, X.S.; Lu, W. PtTe2-Based Type-II Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. Small 2019, 15, e1903362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zhang, K.; Lv, X.; Wang, L.; Zhang, L.; Han, L.; Xing, H. Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure. Sensors 2023, 23, 3203. https://doi.org/10.3390/s23063203
Jiang M, Zhang K, Lv X, Wang L, Zhang L, Han L, Xing H. Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure. Sensors. 2023; 23(6):3203. https://doi.org/10.3390/s23063203
Chicago/Turabian StyleJiang, Mengjie, Kaixuan Zhang, Xuyang Lv, Lin Wang, Libo Zhang, Li Han, and Huaizhong Xing. 2023. "Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure" Sensors 23, no. 6: 3203. https://doi.org/10.3390/s23063203
APA StyleJiang, M., Zhang, K., Lv, X., Wang, L., Zhang, L., Han, L., & Xing, H. (2023). Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure. Sensors, 23(6), 3203. https://doi.org/10.3390/s23063203