Threshold-Responsive Colorimetric Sensing System for the Continuous Monitoring of Gases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of the Threshold-Responsive Colorimetric Sensing System
2.2. Details of the Optoelectronics System
2.3. Colorimetric Sensors
2.4. Gas Sample Preparation
2.5. System Tests and Environmental Testing Conditions
3. Results
3.1. Characterization of the Threshold-Responsive Colorimetric Sensing System
3.2. Reproducibility Performance of the Threshold-Responsive Colorimetric Sensing System for Continuous Monitoring
3.3. Comparative Analysis of the Sensing Parameters of the Threshold-Responsive Colorimetric Sensing System
3.4. Performance of the Threshold-Responsive Colorimetric Sensing System Using Different Preset Threshold Conditions
(analyte-sensing probe complex) → analyte + sensing probe
3.5. Analysis of the Overshoot Response of the Threshold-Responsive Colorimetric Sensing System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lin, C.; Zhu, Y.; Yu, J.; Qin, X.; Xian, X.; Tsow, F.; Forzani, E.S.; Wang, D.; Tao, N. Gradient-Based Colorimetric Sensors for Continuous Gas Monitoring. Anal. Chem. 2018, 90, 5375–5380. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Prabhakar, A.; Iglesias, R.A.; Xian, X.; Shan, X.; Tsow, F.; Forzani, E.S.; Tao, N. A Microfluidic-Colorimetric Sensor for Continuous Monitoring of Reactive Environmental Chemicals. IEEE Sens. J. 2012, 12, 1529–1535. [Google Scholar] [CrossRef]
- Piriya, V.S.A.; Joseph, P.; Daniel, S.C.G.K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric Sensors for Rapid Detection of Various Analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar] [CrossRef]
- Li, Y.Q.; Feng, L. Progress in Paper-Based Colorimetric Sensor Array. Chin. J. Anal. Chem. 2020, 48, 1448–1457. [Google Scholar] [CrossRef]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia Gas Sensors: A Comprehensive Review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef] [PubMed]
- Driau, C.; Fàbrega, C.; Benito-Altamirano, I.; Pfeiffer, P.; Casals, O.; Prades, J.D. Compact, versatile and cost-effective colorimetric gas sensors. In Proceedings of the ISOEN, Fukuoka, Japan, 26–29 May 2019; pp. 1–3. [Google Scholar]
- Zou, X.; Ji, Y.; Li, H.; Wang, Z.; Shi, L.; Zhang, S.; Wang, T.; Gong, Z. Recent Advances of Environmental Pollutants Detection via Paper-Based Sensing Strategy. Luminescence 2021, 36, 1818–1836. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, J.; Wei, G. Recent Advances in the Design of Colorimetric Sensors for Environmental Monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Lin, C.; Xian, X.; Qin, X.; Wang, D.; Tsow, F.; Forzani, E.; Tao, N. High Performance Colorimetric Carbon Monoxide Sensor for Continuous Personal Exposure Monitoring. ACS Sens. 2018, 3, 327–333. [Google Scholar] [CrossRef]
- Pannek, C.; Vetter, T.; Oppmann, M.; Weber, C.; Eberhardt, A.; Dold, M.; Bauersfeld, M.L.; Henfling, M.; Trupp, S.; Schug, B.; et al. Highly Sensitive Reflection Based Colorimetric Gas Sensor to Detect CO in Realistic Fire Scenarios. Sens. Actuators B Chem. 2020, 306, 127572. [Google Scholar] [CrossRef]
- Weber, C.; El-Safoury, M.; Pannek, C.; Engel, L.; Eberhardt, A.; Bauersfeld, M.-L.; Wöllenstein, J. Multispectral Readout System for Detecting Tiny Color Changes of Gas Sensitive Colorimetric Dyes. In Proceedings of the SMSI 2020-Sensors and Instrumentation, Virtual, 22–25 June 2020. [Google Scholar] [CrossRef]
- Morsy, M.K.; Zór, K.; Kostesha, N.; Alstrøm, T.S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H.; et al. Development and Validation of a Colorimetric Sensor Array for Fish Spoilage Monitoring. Food Control 2016, 60, 346–352. [Google Scholar] [CrossRef]
- Weston, M.; Kuchel, R.P.; Ciftci, M.; Boyer, C.; Chandrawati, R. A Polydiacetylene-Based Colorimetric Sensor as an Active Use-by Date Indicator for Milk. J. Colloid Interface Sci. 2020, 572, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Xiao-wei, H.; Xiao-bo, Z.; Ji-yong, S.; Zhi-hua, L.; Jie-wen, Z. Colorimetric Sensor Arrays Based on Chemo-Responsive Dyes for Food Odor Visualization. Trends Food Sci. Technol. 2018, 81, 90–107. [Google Scholar] [CrossRef]
- Kangas, M.J.; Burks, R.M.; Atwater, J.; Lukowicz, R.M.; Williams, P.; Holmes, A.E. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives. Crit. Rev. Anal. Chem. 2017, 47, 138–153. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Sun, Y.; Liu, S.; Zhang, J.; Zhang, C.; Jiang, H.; Han, X.; He, L.; Wang, S.; Zhang, K. Colorimetric and Fluorescent Sensors for Detection of Nerve Agents and Organophosphorus Pesticides. Sens. Actuators B Chem. 2021, 344, 130278. [Google Scholar] [CrossRef]
- Kawamura, K.; Miyazawa, K.; Kent, L. The Past, Present and Future in Tube- and Paper-Based Colorimetric Gas Detectors. AppliedChem 2021, 1, 14–40. [Google Scholar] [CrossRef]
- Liu, R.; Li, Z.; Huang, Z.; Li, K.; Lv, Y. Biosensors for Explosives: State of Art and Future Trends. TrAC-Trends Anal. Chem. 2019, 118, 123–137. [Google Scholar] [CrossRef]
- Azzouz, A.; Kumar, V.; Kim, K.H.; Ballesteros, E.; Rhadfi, T.; Malik, A.K. Advances in Colorimetric and Optical Sensing for Gaseous Volatile Organic Compounds. TrAC-Trends Anal. Chem. 2019, 118, 502–516. [Google Scholar] [CrossRef]
- Askim, J.R.; Suslick, K.S. Hand-Held Reader for Colorimetric Sensor Arrays. Anal. Chem. 2015, 87, 7810–7816. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Suslick, K.S. Colorimetric Sensor Array for Monitoring CO and Ethylene. Anal. Chem. 2019, 91, 797–802. [Google Scholar] [CrossRef]
- Devi, P.; Singh, J.P. A Highly Sensitive Colorimetric Gas Sensor Based on Indium Oxide Nanostructures for H2S Detection at Room Temperature. IEEE Sens. J. 2021, 21, 18512–18518. [Google Scholar] [CrossRef]
- Zheng, L.L.; Guo, Z.Q.; Lin, W.S.; di Lei, S.; Zhu, L.H.; Wu, T.Z.; Guo, W.J.; Xu, H.N.; Chen, Y.Y.; Chen, Z.; et al. Two-Dimensional Pixel-Level Photometric and Colorimetric Mass-Distribution Measurement of Micro-Displays. IEEE Electron. Device Lett. 2021, 42, 720–722. [Google Scholar] [CrossRef]
- Pal, A.; Kulkarni, M.B.; Gupta, H.; Ponnalagu, R.N.; Dubey, S.K.; Goel, S. Portable and Autonomous Device for Real-Time Colorimetric Detection: Validation for Phosphorous and Nitrite Detection. Sens. Actuators A Phys. 2021, 330, 112896. [Google Scholar] [CrossRef]
- Lai, X.; Guo, Q.; Shi, Z.; Chen, H.; Li, D. Rubik’s Cube-Like Multifunctional Sensing Platform. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Virtual, 25–29 January 2021; pp. 1012–1014. [Google Scholar] [CrossRef]
- Dong, C.; Ma, X.; Qiu, N.; Zhang, Y.; Wu, A. An Ultra-Sensitive Colorimetric Sensor Based on Smartphone for Pyrophosphate Determination. Sens. Actuators B Chem. 2021, 329, 129066. [Google Scholar] [CrossRef]
- Fisher, R.; Anderson, K.; Christen, J.B. Using Machine Learning to Objectively Determine Colorimetric Assay Results from Cell Phone Photos Taken under Ambient Lighting. In Proceedings of the Midwest Symposium on Circuits and Systems, Lansing, MI, USA, 9–11 August 2021; pp. 467–470. [Google Scholar] [CrossRef]
- Fairclough, S.M.; Giannetti, C.; Wagner, I.; Shakeel, H. Colorimetric Sensor for PH Monitoring of Liquid Samples Using Bubble Wrap and Mobile Phone Camera. In Proceedings of the FLEPS 2020-IEEE International Conference on Flexible and Printable Sensors and Systems, Manchester, UK, 16–19 August 2020. [Google Scholar] [CrossRef]
- Esmaeili, S.; Zanjanchi, M.A.; Golmojdeh, H.; Shariati, S. Modification of MCM-410-Based Core-Shell for Construction of a Colorimetric Gas Sensor. IEEE Sens. J. 2021, 21, 17665–17672. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Ying, Y. Structural Design of Metal–Organic Frameworks with Tunable Colorimetric Responses for Visual Sensing Applications. Coord. Chem. Rev. 2021, 446, 214102. [Google Scholar] [CrossRef]
- Rakow, N.A.; Suslick, K.S. A Colorimetric Sensor Array for Odour Visualization. Nature 2000, 406, 710–713. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. Portable Optoelectronic Nose for Monitoring Meat Freshness. ACS Sens. 2016, 1, 1330–1335. [Google Scholar] [CrossRef]
- Zhou, M.; Li, T.; Xing, C.; Liu, Y.; Zhao, H. Membrane-Based Portable Colorimetric Gaseous Chlorine Sensing Probe. Anal. Chem. 2021, 93, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Sotirov, S.; Demirci, S.; Marudova, M.; Sahiner, N. Trimesic Acid-Based Co(II) MOFs as Colorimetric Sensor for Detection of Ammonia Gas. IEEE Sens. J. 2022, 22, 3903–3910. [Google Scholar] [CrossRef]
- Lin, C.; Du, Z.; Tao, N.; Wang, D. Gradient-Based Colorimetric Array Sensor for Continuous Monitoring of Multiple Gas Analytes. ACS Sens. 2021, 6, 439–442. [Google Scholar] [CrossRef]
- Tsow, F.; Forzani, E.S.; Tao, N.J. Frequency-Coded Chemical Sensors. Anal. Chem. 2008, 80, 606–611. [Google Scholar] [CrossRef]
- Goode, J.A.; Rushworth, J.V.H.; Millner, P.A. Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir 2015, 31, 6267–6276. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, X.; Bao, C.; Tang, H.; Zhao, Q.; Hu, L.; You, J. A Novel Luminol Derivative and Its Functionalized Filter-Paper for Reversible Double-Wavelength Colorimetric pH Detection in Fruit Juice. Sens. Actuators B Chem. 2018, 262, 869–875. [Google Scholar] [CrossRef]
- Liu, N.Y.; Cay-Durgun, P.; Lai, T.; Sprowls, M.; Thomas, L.; Lind, M.L.; Forzani, E. A Handheld, Colorimetric Optoelectronic Dynamics Analyzer for Measuring Total Ammonia of Biological Samples. IEEE J. Transl. Eng. Health Med. 2018, 6, 2800610. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Miller, D.; Xian, X.; Tsow, F.; Forzani, E.S. A Novel Real-Time Carbon Dioxide Analyzer for Health and Environmental Applications. Sens. Actuators B Chem. 2014, 195, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Trinkel, M.; Trettnak, W.; Reininger, F.; Benes, R.; O’leary, P.; Wolfbeis, O.S. Study of the performance of an optochemical sensor for ammonia. Anal. Chim. Acta 1996, 320, 235–243. [Google Scholar] [CrossRef]
- McGrath, M.J.; Scanaill, C.N. Sensor Technologies: Healthcare, Wellness, and Environmental Applications; Springer Nature: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Agarwal, V.; Metiu, H. Rates of Adsorption and Desorption: Entropic Contributions and Errors Due to Mean-Field Approximations. J. Chem. Phys. 2019, 150, 184702. [Google Scholar] [CrossRef]
- James, A.; Goodrich, J.F.K. Binding and Kinetics for Molecular Biologists; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2007. [Google Scholar]
- Schuck, P.; Zhao, H. The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing. In Methods in Molecular Biology; Humana: Totowa, NJ, USA, 2010; pp. 15–54. [Google Scholar] [CrossRef] [Green Version]
- Takaloo, S.; Moghimi Zand, M. Wearable Electrochemical Flexible Biosensors: With the Focus on Affinity Biosensors. Sens. Bio-Sens. Res. 2021, 32, 100403. [Google Scholar] [CrossRef]
- Mujahid, A.; Afzal, A.; Dickert, F.L. An Overview of High Frequency Acoustic Sensors—QCMs, SAWs and FBARs—Chemical and Biochemical Applications. Sensors 2019, 19, 4395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, M.; Fu, B.; Hota, P.; Cay-Durgun, P.; Wang, R.; Cheng, E.H.; Wiktor, P.; Tsow, F.; Thomas, L.; Lind, M.L.; et al. Threshold-Responsive Colorimetric Sensing System for the Continuous Monitoring of Gases. Sensors 2023, 23, 3496. https://doi.org/10.3390/s23073496
Mo M, Fu B, Hota P, Cay-Durgun P, Wang R, Cheng EH, Wiktor P, Tsow F, Thomas L, Lind ML, et al. Threshold-Responsive Colorimetric Sensing System for the Continuous Monitoring of Gases. Sensors. 2023; 23(7):3496. https://doi.org/10.3390/s23073496
Chicago/Turabian StyleMo, Manni, Bo Fu, Piyush Hota, Pinar Cay-Durgun, Ran Wang, Edward H. Cheng, Peter Wiktor, Francis Tsow, Leslie Thomas, Mary Laura Lind, and et al. 2023. "Threshold-Responsive Colorimetric Sensing System for the Continuous Monitoring of Gases" Sensors 23, no. 7: 3496. https://doi.org/10.3390/s23073496
APA StyleMo, M., Fu, B., Hota, P., Cay-Durgun, P., Wang, R., Cheng, E. H., Wiktor, P., Tsow, F., Thomas, L., Lind, M. L., & Forzani, E. (2023). Threshold-Responsive Colorimetric Sensing System for the Continuous Monitoring of Gases. Sensors, 23(7), 3496. https://doi.org/10.3390/s23073496