Measuring the Immediate Effects of High-Intensity Functional Training on Motor, Cognitive and Physiological Parameters in Well-Trained Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
BIA Analysis
2.2. Experimental Protocol and Setup
2.2.1. Lactate Levels
2.2.2. Repeated Jumps
2.2.3. Monopodalic Balance
2.2.4. Cognitive Task
2.2.5. High-Intensity Functional Training Circuit
- In the first exercise, the subject hung from a bar using their hands and, for each repetition, had to bring their feet towards the bar by pulling their legs up [28].
- The second exercise was an agility ladder drill [29] in which the subject performed a low skip with his legs using the ladder placed on the ground, alternating between right and left supports.
- The third exercise involved a series of lunges on one leg, alternating right and left, on a bosu while the subject held a 3 kg medicine ball with arms extended above the head and then performing a side bend using the trunk [30].
- The setup of the fourth exercise was similar to that of the third but, in this case, the subject twisted their trunk while holding the medicine ball, with their arms folded in front of their chest [30].
- The fifth exercise involved the use of a bar, with one end connected by a rubber band attached to the wall. The subject took the bar with a shoulder-width grip using two hands and pre-tensioned the elastic; at this point, starting from a squatted position with the bar in front of the chest and the wall behind them, the subject went into an upright position, rising onto their toes, carrying the bar with their arms above the head and then returning to the starting position [31].
- The sixth exercise was similar to the fifth but, in this case, the subject started from a squatting position with the wall in front of them, keeping their arms extended and the elastic pre-stretched. At this point, the subject stood up into an upright position by pulling the bar to their chest and then returned to the starting position [31].
- The seventh exercise consisted of a series of lateral leaps with a minimum distance of 2 m, indicated by two stickers placed on the ground that were clearly visible to the subject [32].
- The eighth exercise consisted of a series of vertical bipedal jumps in which the subject had to try to touch the highest possible point with one hand [33].
2.3. Data Analysis
2.3.1. Lactate Level
2.3.2. Monopodalic Balance
- Path Length (PL), which is the total length of the CoP path in the plane;
- Ellipse Area (EA), which is the minimum area of the bivariate confidence ellipse that contains at least 95% of the path points.
2.3.3. Repeated Jumps
2.3.4. Cognitive Task
2.4. Statistical Analysis
3. Results
3.1. Lactate Level
3.2. Monopodalic Balance
3.3. Repeated Jumps
3.4. Cognitive Task
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sevil-Serrano, J.; Aibar, A.; Abós, Á.; Generelo, E.; García-González, L. Improving motivation for physical activity and physical education through a school-based intervention. J. Exp. Educ. 2020, 90, 383–403. [Google Scholar] [CrossRef]
- Agarwal, S. Cardiovascular benefits of exercise. Int. J. Gen. Med. 2012, 5, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S. High-intensity interval training for health benefits and care of cardiac diseases-The key to an efficient exercise protocol. World J. Cardiol. 2019, 11, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Jacob, N.; So, I.; Sharma, B.; Marzolini, S.; Tartaglia, M.C.; Green, R. Effects of high-intensity interval training on blood lactate levels and cognition in healthy adults: Protocol for systematic review and network meta-analyses. Syst. Rev. 2022, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, B.B.; Protzen, G.V.; Galliano, L.M.; Kirk, C.; Del Vecchio, F.B. Effects of High-Intensity Interval Training in Combat Sports: A Systematic Review with Meta-Analysis. J. Strength Cond. Res. 2020, 34, 888–900. [Google Scholar] [CrossRef]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic High-Intensity Intervals Improve V˙O2max More Than Moderate Training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekari, S.; Earle, M.; Martins, R.; Drisdelle, S.; Killen, M.; Bouffard-Levasseur, V.; Dupuy, O. Effect of High Intensity Interval Training Compared to Continuous Training on Cognitive Performance in Young Healthy Adults: A Pilot Study. Brain Sci. 2020, 10, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahdur, K.; Gilchrist, R.; Park, G.; Nina, L.; Pruna, R. Effect of HIIT on cognitive and physical performance. Apunt. Med. de l’Esport 2019, 54, 113–117. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Zhang, Z.; Wang, Y.; Zuo, C.; Bo, S. A Shorter-Bout of HIIT Is More Effective to Promote Serum BDNF and VEGF-A Levels and Improve Cognitive Function in Healthy Young Men. Front. Physiol. 2022, 13, 1266. [Google Scholar] [CrossRef]
- Franchini, E.; Cormack, S.; Takito, M.Y. Effects of High-Intensity Interval Training on Olympic Combat Sports Athletes’ Performance and Physiological Adaptation: A Systematic Review. J. Strength Cond. Res. 2019, 33, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Carlos Poston, W.S. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilke, J. Functional high-intensity exercise is more effective in acutely increasing working memory than aerobic walking: An exploratory randomized, controlled trial. Sci. Rep. 2020, 10, 12335. [Google Scholar] [CrossRef]
- Maté-Muñoz, J.L.; Budurin, M.; González-Lozano, S.; Heredia-Elvar, J.R.; Cañuelo-Márquez, A.M.; Barba-Ruiz, M.; Muriarte, D.; Garnacho-Castaño, M.V.; Hernández-Lougedo, J.; García-Fernández, P. Physiological Responses at 15 Minutes of Recovery after a Session of Functional Fitness Training in Well-Trained Athletes. Int. J. Environ. Res. Public Health 2022, 19, 8864. [Google Scholar] [CrossRef]
- Yoğunluklu, Y.; Egzersizlerin, F.; Ritim, S.; Performans, A.; Üzerindeki, P.; Etkisi, A.; Eken, Ö.; Bayer, R.; Bayrakdaroğlu, S. The Acute Effect of High-Intensity Functional Exercises on Circadian Rhythm and Anaerobic Performance Parameters. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 2022, 11, 279–286. [Google Scholar]
- Andreeva, A.; Melnikov, A.; Skvortsov, D.; Akhmerova, K.; Vavaev, A.; Golov, A.; Draugelite, V.; Nikolaev, R.; Chechelnickaia, S.; Zhuk, D.; et al. Postural Stability in Athletes: The Role of Age, Sex, Performance Level, and Athlete Shoe Features. Sports 2020, 8, 89. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic Bioelectrical Impedance Vector Reference Values for Assessing Body Composition in Male and Female Athletes. Int. J. Environ. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [Green Version]
- Tanner, R.K.; Fuller, K.L.; Ross, M.L.R. Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. Eur. J. Appl. Physiol. 2010, 109, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, J.M.; Sharpe, K.; Knight, E.; Fuller, K.L.; Tanner, R.K.; Gore, C.J. Reliability and Accuracy of Six Hand-Held Blood Lactate Analysers. J. Sports Sci. Med. 2015, 14, 203–214. [Google Scholar] [PubMed]
- Molinaro, L.; Taborri, J.; Montecchiani, M.; Rossi, S. Assessing the Effects of Kata and Kumite Techniques on Physical Performance in Elite Karatekas. Sensors 2020, 20, 3186. [Google Scholar] [CrossRef]
- Taborri, J.; Molinaro, L.; Santospagnuolo, A.; Vetrano, M.; Vulpiani, M.; Rossi, S. A Machine-Learning Approach to Measure the Anterior Cruciate Ligament Injury Risk in Female Basketball Players. Sensors 2021, 21, 3141. [Google Scholar] [CrossRef]
- Rössler, R.; Donath, L.; Bizzini, M.; Faude, O. A new injury prevention programme for children’s football–FIFA 11+ Kids–can improve motor performance: A cluster-randomised controlled trial. J. Sports Sci. 2016, 34, 549–556. [Google Scholar] [CrossRef]
- Stratford, C.; Dos’Santos, T.; McMahon, J.J. The 10/5 Repeated Jumps Test: Are 10 Repetitions and Three Trials Necessary? Biomechanics 2020, 1, 1–14. [Google Scholar] [CrossRef]
- Molinaro, L.; Taborri, J.; Rossi, S. Baropodometric Analysis in Different Feet Positions: Reliability and Repeatability Evaluation. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 7 June 2021; IEEE: New York, NY, USA, 2021; pp. 295–300. [Google Scholar]
- Hahn, T.; Foldspang, A.; Vestergaard, E.; Ingemann-Hansen, T. One-leg standing balance and sports activity. Scand. J. Med. Sci. Sports 2007, 9, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Dugdale, J.H.; Sanders, D.; Hunter, A.M. Reliability of Change of Direction and Agility Assessments in Youth Soccer Players. Sports 2020, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Magill, R.A.; Anderson, D.I. Motor Learning and Control Concepts and Applications, 10th ed.; McGraw Hill: New York, NY, USA, 2014. [Google Scholar]
- Monfort-Pañego, M.; Vera-García, F.J.; Sánchez-Zuriaga, D.; Sarti-Martínez, M. Electromyographic Studies in Abdominal Exercises: A Literature Synthesis. J. Manip. Physiol. Ther. 2009, 32, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Chandrakumar, N.; Ramesh, C. Effect of Ladder Drill and SAQ Training on Speed and Agility among Sports Club Badminton Players. Int. J. Appl. Res. 2015, 1, 527–529. [Google Scholar]
- Bouillon, L.E.; Hofener, M.; O’Donnel, A.; Milligan, A.; Obrock, C. Comparison of Muscle Activity Using Unstable Devices During a Forward Lunge. J. Sport Rehabil. 2020, 29, 394–399. [Google Scholar] [CrossRef]
- Choi, H.-M.; Hurr, C.; Kim, S. Effects of Elastic Band Exercise on Functional Fitness and Blood Pressure Response in the Healthy Elderly. Int. J. Environ. Res. Public Health 2020, 17, 7144. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding Change of Direction Ability in Sport. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.A. Jumping into Plymetrics; Leisure Press: New York, NY, USA, 1992. [Google Scholar]
- Rossi, S.; Patane, F.; Scalise, L.; Marchionni, P.; Cappa, P. Centre of pressure in dynamic posturography: A comparison among systems based on a pressure matrix and a force platform. Meas. Sci. Technol. 2010, 21, 015801. [Google Scholar] [CrossRef]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0805802835. [Google Scholar]
- Feito, Y.; Giardina, M.J.; Butcher, S.; Mangine, G.T. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes. Appl. Physiol. Nutr. Metab. 2019, 44, 727–735. [Google Scholar] [CrossRef]
- Daniella de Vasconcelos Costa, B.; Elisa Caputo Ferreira, M.; Gantois, P.; Kassiano, W.; Paes, S.T.; de Lima-Júnior, D.; Cyrino, E.S.; de Souza Fortes, L. Acute Effect of Drop-Set, Traditional, and Pyramidal Systems in Resistance Training on Neuromuscular Performance in Trained Adults. J. Strength Cond. Res. 2019, 35, 991–996. [Google Scholar]
- Piero, D.W.-D.; Valverde-Esteve, T.; Redondo-Castán, J.C.; Pablos-Abella, C.; Díaz-Pintado, J.V.S.-A. Effects of work-interval duration and sport specificity on blood lactate concentration, heart rate and perceptual responses during high intensity interval training. PLoS ONE 2018, 13, e0200690. [Google Scholar] [CrossRef] [Green Version]
- Kujach, S.; Olek, R.A.; Byun, K.; Suwabe, K.; Sitek, E.; Ziemann, E.; Laskowski, R.; Soya, H. Acute Sprint Interval Exercise Increases Both Cognitive Functions and Peripheral Neurotrophic Factors in Humans: The Possible Involvement of Lactate. Front. Neurosci. 2020, 13, 1455. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.J. Lactate: Valuable for physical performance and maintenance of brain function during exercise. Biosci. Horiz. 2014, 7, hzu001. [Google Scholar] [CrossRef]
- Chmura, J.; Nazar, K.; Kaciuba-Uścilko, H. Choice Reaction Time During Graded Exercise in Relation to Blood Lactate and Plasma Catecholamine Thresholds. Int. J. Sports Med. 1994, 15, 172–176. [Google Scholar] [CrossRef]
- Kamijo, K.; Nishihira, Y.; Higashiura, T.; Kuroiwa, K. The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int. J. Psychophysiol. 2007, 65, 114–121. [Google Scholar] [CrossRef]
- Nardone, A.; Tarantola, J.; Giordano, A.; Schieppati, M. Fatigue effects on body balance. Electroencephalogr. Clin. Neurophysiol. Mot. Control. 1997, 105, 309–320. [Google Scholar] [CrossRef] [PubMed]
N = 19 | Mean ± SD |
---|---|
Age (year) | 28 ± 6 |
Height (cm) | 177.3 ± 5.9 |
Weight (kg) | 75.7 ± 7.5 |
Years of training (n) | 11.2 ± 3.9 |
Body Resistance (Ω) | 434.9 ± 40.6 |
Body Reactance (Ω) | 57.9 ± 5.7 |
Phase angle (°) | 7.5 ± 0.5 |
Sessions | Lactate Level ([La−]b) [mmol/L] |
---|---|
PRE | 2.5 (0.9) POST1, POST2, POST3, POST4, POST5, POST6 |
POST1 | 5.4 (1.2) PRE, POST3, POST5, POST6 |
POST2 | 5.9 (1.3) PRE, POST3, POST5, POST6 |
POST3 | 8.2 (2.2) PRE, POST1, POST2 |
POST4 | 8.0 (2.1) PRE, POST1, POST2 |
POST5 | 7.8 (2.7) PRE, POST1, POST2 |
POST6 | 7.7 (2.4) PRE, POST1, POST2 |
Scheme 2. | EADX [mm2] | PLDX [mm] | EASX [mm2] | PLSX [mm] |
---|---|---|---|---|
PRE | 1.5 (0.8) POST1 | 25.9 (6.8) | 1.5 (0.8) POST1 | 24.9 (7.0) |
POST1 | 2.7 (1.5) PRE | 24.7 (6.7) | 2.7 (1.4) PRE | 27.1 (8.4) |
POST2 | 1.9 (0.9) | 26.1 (6.8) | 2.4 (1.4) | 27.6 (6.1) |
POST3 | 1.9 (1.1) | 24.4 (5.3) | 2.3 (1.2) | 26.1 (5.6) |
POST4 | 2.1 (0.9) | 26.5 (5.3) | 2.3 (1.5) | 23.9 (6.1) |
POST5 | 2.1 (1.3) | 23.3 (6.2) | 2.1 (1.1) | 21.8 (4.4) |
POST6 | 1.7 (0.6) | 24.3 (5.8) | 2.0 (0.8) | 24.5 (6.1) |
Sessions | JHA [cm] | JHM [cm] |
---|---|---|
PRE | 31.3 (4.1) | 33.9 (4.6) |
POST1 | 32.5 (4.7) | 34.9 (4.7) |
POST2 | 33.5 (5.1) | 36.3 (5.0) |
POST3 | 32.5 (4.7) | 34.5 (4.9) |
POST4 | 32.7 (5.3) | 35.1 (5.4) |
POST5 | 33.6 (4.7) | 36.0 (4.8) |
POST6 | 32.9 (5.2) | 35.5 (5.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinaro, L.; Taborri, J.; Pauletto, D.; Guerra, V.; Molinaro, D.; Sicari, G.; Regina, A.; Guerra, E.; Rossi, S. Measuring the Immediate Effects of High-Intensity Functional Training on Motor, Cognitive and Physiological Parameters in Well-Trained Adults. Sensors 2023, 23, 3937. https://doi.org/10.3390/s23083937
Molinaro L, Taborri J, Pauletto D, Guerra V, Molinaro D, Sicari G, Regina A, Guerra E, Rossi S. Measuring the Immediate Effects of High-Intensity Functional Training on Motor, Cognitive and Physiological Parameters in Well-Trained Adults. Sensors. 2023; 23(8):3937. https://doi.org/10.3390/s23083937
Chicago/Turabian StyleMolinaro, Luca, Juri Taborri, Denis Pauletto, Valentina Guerra, Damiano Molinaro, Giovanni Sicari, Antonello Regina, Enrico Guerra, and Stefano Rossi. 2023. "Measuring the Immediate Effects of High-Intensity Functional Training on Motor, Cognitive and Physiological Parameters in Well-Trained Adults" Sensors 23, no. 8: 3937. https://doi.org/10.3390/s23083937
APA StyleMolinaro, L., Taborri, J., Pauletto, D., Guerra, V., Molinaro, D., Sicari, G., Regina, A., Guerra, E., & Rossi, S. (2023). Measuring the Immediate Effects of High-Intensity Functional Training on Motor, Cognitive and Physiological Parameters in Well-Trained Adults. Sensors, 23(8), 3937. https://doi.org/10.3390/s23083937