Analysis of Dynamic Plantar Pressure and Influence of Clinical-Functional Measures on Their Performance in Subjects with Bimalleolar Ankle Fracture at 6 and 12 Months Post-Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Participants
2.3. Procedure
2.3.1. Functional Scales
2.3.2. Anthropometric Measurements
2.3.3. Ankle Dorsiflexion Range of Movement
2.3.4. Gait Analysis
2.3.5. Dynamic Plantar Pressure
2.4. Statistical Analysis
3. Results
3.1. Differences in AFG between the OA and NOA at 6 Months and Compared to the CG
3.2. Differences in AFG between the OA and NOA at 12 Months and Compared to the CG
3.3. Differences in AFG between 6 and 12 Months
3.4. Correlation of Dynamic Plantar Pressure with Gait Parameters, Clinical Measures, and Functional Scales
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandi, D.M. Ankle fractures. Clin. Podiatr. Med. Surg. 2012, 29, 155–186. [Google Scholar] [CrossRef] [PubMed]
- Noback, P.C.; Freibott, C.E.; Dougherty, T.; Swart, E.F.; Rosenwasser, M.P.; Vosseller, J.T. Estimates of Direct and Indirect Costs of Ankle Fractures: A Prospective Analysis. J. Bone Jt. Surg. Am. 2020, 102, 2166–2173. [Google Scholar] [CrossRef]
- Seewoonarain, S.; Prempeh, M. Ankle Fractures: Review Article. J. Arthritis 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, N.; Davis, M.L.; Jupiter, D.C. Epidemiology of Foot and Ankle Fractures in the United States: An Analysis of the National Trauma Data Bank (2007 to 2011). J. Foot Ankle Surg. 2014, 53, 606–608. [Google Scholar] [CrossRef]
- Elsoe, R.; Ostgaard, S.E.; Larsen, P. Population-based epidemiology of 9767 ankle fractures. Foot Ankle Surg. 2018, 24, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Juto, H.; Nilsson, H.; Morberg, P. Epidemiology of Adult Ankle Fractures: 1756 cases identified in Norrbotten County during 2009–2013 and classified according to AO/OTA. BMC Musculoskelet. Disord. 2018, 19, 441. [Google Scholar] [CrossRef] [Green Version]
- Scheer, R.C.; Newman, J.M.; Zhou, J.J.; Oommen, A.J.; Naziri, Q.; Shah, N.V.; Pascal, S.C.; Penny, G.S.; McKean, J.M.; Tsai, J.; et al. Ankle Fracture Epidemiology in the United States: Patient-Related Trends and Mechanisms of Injury. J. Foot Ankle Surg. 2020, 59, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Pina, G.; Fonseca, F.; Vaz, A.; Carvalho, A.; Borralho, N. Unstable malleolar ankle fractures: Evaluation of prognostic factors and sports return. Arch. Orthop. Trauma Surg. 2021, 141, 99–104. [Google Scholar] [CrossRef]
- Hjelle, A.M.; Apalset, E.M.; Gjertsen, J.-E.; Nilsen, R.M.; Lober, A.; Tell, G.S.; Mielnik, P.F. Associations of overweight, obesity and osteoporosis with ankle fractures. BMC Musculoskelet. Disord. 2021, 22, 723. [Google Scholar] [CrossRef]
- Valtola, A.; Honkanen, R.; Kröger, H.; Tuppurainen, M.; Saarikoski, S.; Alhava, E. Lifestyle and other factors predict ankle fractures in perimenopausal women: A population-based prospective cohort study. Bone 2002, 30, 238–242. [Google Scholar] [CrossRef]
- Tantigate, D.; Ho, G.; Kirschenbaum, J.; Bäcker, H.; Asherman, B.; Freibott, C.E.; Greisberg, J.K.; Vosseller, J.T. Timing of Open Reduction and Internal Fixation of Ankle Fractures. Foot Ankle Spéc. 2019, 12, 401–408. [Google Scholar] [CrossRef]
- Nilsson, G.M.; Jonsson, K.; Ekdahl, C.S.; Eneroth, M. Unsatisfactory outcome following surgical intervention of ankle fractures. Foot Ankle Surg. 2005, 11, 11–16. [Google Scholar] [CrossRef]
- Egol, K.A.; Tejwani, N.C.; Walsh, M.G.; Capla, E.L.; Koval, K.J. Predictors of short-term functional outcome following ankle fracture surgery. J. Bone Jt. Surg. Am. 2006, 88, 974–979. [Google Scholar] [CrossRef]
- Ekinci, M.; Birisik, F.; Ersin, M.; Şahinkaya, T.; Öztürk, I. A prospective evaluation of strength and endurance of ankle dorsiflexors-plantar flexors after conservative management of lateral malleolar fractures. Turk. J. Phys. Med. Rehabil. 2021, 67, 300–307. [Google Scholar] [CrossRef]
- Appell, H.-J. Muscular Atrophy following Immobilisation. Sport. Med. 1990, 10, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Segal, G.; Elbaz, A.; Parsi, A.; Heller, Z.; Palmanovich, E.; Nyska, M.; Feldbrin, Z.; Kish, B. Clinical outcomes following ankle fracture: A cross-sectional observational study. J. Foot Ankle Res. 2014, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.E.; Walter, G.A.; Okereke, E.; Scarborough, M.T.; Esterhai, J.L.; George, S.Z.; Kelley, M.J.; Tillman, S.M.; Gibbs, J.D.; Elliott, M.A.; et al. Muscle Adaptations with Immobilization and Rehabilitation after Ankle Fracture. Med. Sci. Sport. Exerc. 2004, 36, 1695–1701. [Google Scholar] [CrossRef]
- Shaffer, M.A.; Okereke, E.; Esterhai, J.L.; Elliott, M.A.; Walker, G.A.; Yim, S.H.; Vandenborne, K. Effects of immobilization on plantar-flexion torque, fatigue resistance, and functional ability following an ankle fracture. Phys. Ther. 2000, 80, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Suciu, O.; Onofrei, R.R.; Totorean, A.D.; Suciu, S.C.; Amaricai, E.C. Gait analysis and functional outcomes after twelve-week rehabilitation in patients with surgically treated ankle fractures. Gait Posture 2016, 49, 184–189. [Google Scholar] [CrossRef]
- Thakore, R.V.; Hooe, B.S.; Considine, P.; Sathiyakumar, V.; Onuoha, G.; Hinson, J.K.; Obremskey, W.T.; Sethi, M.K. Ankle fractures and employment: A life-changing event for patients. Disabil. Rehabil. 2015, 37, 417–422. [Google Scholar] [CrossRef]
- Day, G.A.; Swanson, C.E.; Hulcombe, B.G. Operative Treatment of Ankle Fractures: A Minimum Ten-Year Follow-up. Foot Ankle Int. 2001, 22, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, G.; Nyberg, P.; Ekdahl, C.; Eneroth, M. Performance after surgical treatment of patients with ankle fractures—14-month follow-up. Physiother. Res. Int. 2003, 8, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Beckenkamp, P.R.; Lin, C.-W.C.; Chagpar, S.; Herbert, R.D.; van der Ploeg, H.P.; Moseley, A.M. Prognosis of Physical Function Following Ankle Fracture: A Systematic Review With Meta-analysis. J. Orthop. Sport. Phys. Ther. 2014, 44, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, H.B.; Alexander, I.J.; Adelaar, R.S.; Nunley, J.A.; Myerson, M.S.; Sanders, M. Clinical Rating Systems for the Ankle-Hindfoot, Midfoot, Hallux, and Lesser Toes. Foot Ankle Int. 1994, 15, 349–353. [Google Scholar] [CrossRef]
- Olerud, C.; Molander, H. A scoring scale for symptom evaluation after ankle fracture. Arch. Orthop. Trauma Surg. 1984, 103, 190–194. [Google Scholar] [CrossRef]
- van Hoeve, S.; Houben, M.; Verbruggen, J.P.A.M.; Willems, P.; Meijer, K.; Poeze, M. Gait analysis related to functional outcome in patients operated for ankle fractures. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2019, 37, 1658–1666. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Wang, Y.; Tian, F.; Wang, W.; Zhong, R.; Zhai, H.; Wang, S. Clinical assessments and gait analysis for patients with Trimalleolar fractures in the early postoperative period. BMC Musculoskelet. Disord. 2022, 23, 663. [Google Scholar] [CrossRef]
- Fernández-Gorgojo, M.; Salas-Gómez, D.; Sánchez-Juan, P.; Barbado, D.; Laguna-Bercero, E.; Pérez-Núñez, M.I. Clinical-Functional Evaluation and Test-Retest Reliability of the G-WALK Sensor in Subjects with Bimalleolar Ankle Fractures 6 Months after Surgery. Sensors 2022, 22, 3050. [Google Scholar] [CrossRef]
- Salas-Gómez, D.; Fernández-Gorgojo, M.; Sánchez-Juan, P.; Pérez-Núñez, M.I.; Laguna-Bercero, E.; Prat-Luri, A.; Barbado, D. Measuring Recovery and Understanding Long-Term Deficits in Balance, Ankle Mobility and Hip Strength in People after an Open Reduction and Internal Fixation of Bimalleolar Fracture and Their Impact on Functionality: A 12-Month Longitudinal Study. J. Clin. Med. 2022, 11, 2539. [Google Scholar] [CrossRef]
- Wang, R.; Thur, C.K.; Gutierrez-Farewik, E.M.; Wretenberg, P.; Broström, E. One year follow-up after operative ankle fractures: A prospective gait analysis study with a multi-segment foot model. Gait Posture 2010, 31, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, D.; Macri, F.; Lupselo, F.S.; Preis, O.C. Gait and function as tools for the assessment of fracture repair—The role of movement analysis for the assessment of fracture healing. Injury 2014, 45 (Suppl. S2), S39–S43. [Google Scholar] [CrossRef] [PubMed]
- Muro-De-La-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [Green Version]
- Abdul Razak, A.H.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot Plantar Pressure Measurement System: A Review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buldt, A.K.; Allan, J.J.; Landorf, K.B.; Menz, H.B. The relationship between foot posture and plantar pressure during walking in adults: A systematic review. Gait Posture 2018, 62, 56–67. [Google Scholar] [CrossRef]
- Hetsroni, I.; Nyska, M.; Ben-Sira, D.; Arnson, Y.; Buksbaum, C.; Aliev, E.; Mann, G.; Massarwe, S.; Rozenfeld, G.; Ayalon, M. Analysis of Foot and Ankle Kinematics after Operative Reduction of High-Grade Intra-Articular Fractures of the Calcaneus. J. Trauma Inj. Infect. Crit. Care 2011, 70, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Horisberger, M.; Hintermann, B.; Valderrabano, V. Alterations of plantar pressure distribution in posttraumatic end-stage ankle osteoarthritis. Clin. Biomech. 2009, 24, 303–307. [Google Scholar] [CrossRef]
- Hirschmüller, A.; Konstantinidis, L.; Baur, H.; Müller, S.; Mehlhorn, A.; Kontermann, J.; Grosse, U.; Südkamp, N.P.; Helwig, P. Do changes in dynamic plantar pressure distribution, strength capacity and postural control after intra-articular calcaneal fracture correlate with clinical and radiological outcome? Injury 2011, 42, 1135–1143. [Google Scholar] [CrossRef]
- Agar, A.; Şahin, A.; Guclu, S.A.; Gülabi, D.; Erturk, C. Foot Loading Analysis of Intra-articular Tibia Pilon Fracture. J. Am. Podiatr. Med. Assoc. 2022, 112, 21–107. [Google Scholar] [CrossRef]
- The American Orthopedic Foot and Ankle Score (AOFAS) [Internet]. Code Technol. We Collect Orthop. Patient Outcomes. 2017. Available online: https://www.codetechnology.com/american-orthopedic-foot-ankle-score-aofas/ (accessed on 23 February 2017).
- Van Lieshout, E.M.M.; De Boer, A.S.; Meuffels, D.E.; Den Hoed, P.T.; Van der Vlies, C.H.; Tuinebreijer, W.E.; Verhofstad, M.H. American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Score: A study protocol for the translation and validation of the Dutch language version. BMJ Open 2017, 7, e012884. [Google Scholar] [CrossRef]
- Nilsson, G.M.; Eneroth, M.; Ekdahl, C.S. The Swedish version of OMAS is a reliable and valid outcome measure for patients with ankle fractures. BMC Musculoskelet. Disord. 2013, 14, 109. [Google Scholar] [CrossRef] [Green Version]
- Lohman, T.G.; Roche, A.F.; Martorell, R. (Eds.) Anthropometric Standardization Reference Manual; Abridged Edition; Human Kinetics Books: Champaign, IL, USA, 1991. [Google Scholar]
- Bennell, K.; Talbot, R.; Wajswelner, H.; Techovanich, W.; Kelly, D.; Hall, A. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust. J. Physiother. 1998, 44, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, P.; Nielsen, H.B.; Lund, C.; Sørensen, D.S.; Larsen, B.T.; Matthews, M.; Vicenzino, B.; Elsoe, R. A novel tool for measuring ankle dorsiflexion: A study of its reliability in patients following ankle fractures. Foot Ankle Surg. 2016, 22, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Venturni, C.; André, A.; Aguilar, B.P.; Giacomelli, B.R. Reliability of two evaluation methods of active range of motion in the ankle of healthy individuals. Acta Fisiátrica 2006, 13, 39–43. [Google Scholar]
- Yang, S.; Li, Q. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review. Sensors 2012, 12, 6102–6116. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Renau, M.; Pérez-Soriano, P.; Ribas-García, V.; Queralt, A. Intra and intersession repeatability and reliability of the S-Plate® pressure platform. Gait Posture 2017, 52, 224–226. [Google Scholar] [CrossRef]
- de Bengoa Vallejo, R.B.; Iglesias, M.E.L.; Zeni, J.; Thomas, S. Reliability and Repeatability of the Portable EPS-Platform Digital Pressure-Plate System. J. Am. Podiatr. Med. Assoc. 2013, 103, 197–203. [Google Scholar]
- Kawai, H.; Taniguchi, Y.; Seino, S.; Sakurai, R.; Osuka, Y.; Obuchi, S.; Watanabe, Y.; Kim, H.; Inagaki, H.; Kitamura, A.; et al. Reference values of gait parameters measured with a plantar pressure platform in community-dwelling older Japanese adults. Clin. Interv. Aging 2019, 14, 1265–1276. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, P.; Maiya, G.A.; Kumar, P. Test-Retest Reliability of the Win-Track Platform in Analyzing the Gait Parameters and Plantar Pressures During Barefoot Walking in Healthy Adults. Foot Ankle Spéc. 2012, 5, 306–312. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Perugini, M.; Gallucci, M.; Costantini, G. A Practical Primer To Power Analysis for Simple Experimental Designs. Int. Rev. Soc. Psychol. 2018, 31, 20. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas Castro, J.M. Potencia estadística y cálculo del tamaño del efecto en G*Power: Complementos a las pruebas de significación estadística y su aplicación en psicología. Salud Soc. 2014, 5, 210–244. [Google Scholar] [CrossRef] [Green Version]
- Jandova, S.; Pazour, J.; Janura, M. Comparison of Plantar Pressure Distribution During Walking After Two Different Surgical Treatments for Calcaneal Fracture. J. Foot Ankle Surg. 2019, 58, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Hetsroni, I.; Ben-Sira, D.; Nyska, M.; Ayalon, M. Plantar Pressure Anomalies After Open Reduction With Internal Fixation of High-Grade Calcaneal Fractures. Foot Ankle Int. 2014, 35, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.L.; Maher, R.M.; Higbie, E.J. Temporal patterns of plantar pressures and lower-leg muscle activity during walking: Effect of speed. Gait Posture 2004, 19, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-W.C.; Donkers, N.A.; Refshauge, K.M.; Beckenkamp, P.R.; Khera, K.; Moseley, A.M. Rehabilitation for ankle fractures in adults. Cochrane Database Syst. Rev. 2012, 11, CD005595. [Google Scholar] [CrossRef] [PubMed]
- Pugia, M.L.; Middel, C.J.; Seward, S.W.; Pollock, J.L.; Hall, R.C.; Lowe, L.; Mahony, L.; Henderson, N.E. Comparison of Acute Swelling and Function in Subjects with Lateral Ankle Injury. J. Orthop. Sport. Phys. Ther. 2001, 31, 384–388. [Google Scholar] [CrossRef]
- Wiewiorski, M.; Dopke, K.; Steiger, C.; Valderrabano, V. Muscular atrophy of the lower leg in unilateral post traumatic osteoarthritis of the ankle joint. Int. Orthop. 2012, 36, 2079–2085. [Google Scholar] [CrossRef] [Green Version]
- Becker, H.P.; Rosenbaum, D.; Kriese, T.; Gerngross, H.; Claes, L. Gait asymmetry following successful surgical treatment of ankle fractures in young adults. Clin. Orthop. Relat. Res. 1995, 311, 262–269. [Google Scholar]
- Losch, A.; Meybohm, P.; Schmalz, T.; Fuchs, M.; Vamvukakis, F.; Dresing, K.; Blumentritt, S.; Stürmer, K.M. Functional results of dynamic gait analysis after 1 year of hobby-athletes with a surgically treated ankle fracture. Sportverletz. Sportschaden Organ Ges. Orthop.-Traumatol. Sportmed. 2002, 16, 101–107. [Google Scholar] [CrossRef]
- Nilsson, G.M.; Jonsson, K.; Ekdahl, C.S.; Eneroth, M. Effects of a training program after surgically treated ankle fracture: A prospective randomised controlled trial. BMC Musculoskelet. Disord. 2009, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Böpple, J.C.; Tanner, M.; Campos, S.; Fischer, C.; Müller, S.; Wolf, S.I.; Doll, J. Short-term results of gait analysis with the Heidelberg foot measurement method and functional outcome after operative treatment of ankle fractures. J. Foot Ankle Res. 2022, 15, 2. [Google Scholar] [CrossRef]
Type | AFG (n = 22) Mean ± SD | 95% CI | CG (n = 11) | 95% CI |
---|---|---|---|---|
Mean ± SD | ||||
Age (years) | 43.50 ± 10.20 | 39.0; 48.0 | 39.90 ± 8.60 | 34.10; 45.70 |
Sex Women (%); Men (%) | 45% (W); 55% (M) | 55% (W); 45% (M) | ||
Height (cm) | 169.30 ± 9.50 | 164.80; 173.70 | 170.50 ± 7.90 | 165.20; 175.80 |
Weight (kg) | 77.80 ± 10.60 | 73.10; 82.50 | 74.00 ± 9.10 | 67.90; 80.10 |
Limb Length (OA)/dominant limb CG * (cm) | 85.60 ± 5.90 | 82.90; 88.20 | 86.20 ± 5.50 * | 82.60; 89.90 * |
Limb Length (NOA)(cm) | 85.60 ± 5.90 | 82.90; 88.20 | ||
Days from injury to surgery | 4.80 ± 7.60 | 1.40; 8.10 | ||
Immobilization (weeks) | 3.40 ± 1.20 | 2.80; 3.90 | ||
Rehabilitation time (weeks) | 13.00 ± 2.40 | 11.90; 14.10 | ||
AOFAS Ankle-Hindfoot score | 73.60 ± 11.40 | 71.90; 75.30 | ||
OMAS | 57.30 ± 22.00 | 54.10; 60.60 | ||
Corticosteroid use (% no) | 95 | |||
Arteriopathy (% no) | 100 | |||
Diabetes (% no) | 100 | |||
Complications (% no) | 95 |
AFG (n = 22) | MD (OA-NOA) | CG (n = 11) | MD (AFG 1-CG) | ||
---|---|---|---|---|---|
OA | NOA | (95% CI) | DL | (95% CI) | |
Mean ± SD | Mean ± SD | Mean ± SD | |||
Calf perimeter (cm) | 34.20 ± 4.00 | 35.50 ± 4.40 | −1.30 (−2.00; −0.50) ** | 33.70 ± 2.50 | 0.50 (3.10; −2.30) |
Bimalleolar perimeter (cm) | 25.10 ± 2.10 | 24.10 ± 2.10 | 1.00 (0.80; 1.20) ** | 21.90 ± 1.60 | 3.20 (4.60; 1.70) * |
ADF ROM (degrees) | 22.80 ± 7.40 | 35.40 ± 5.30 | −12.70 (−15.10; −10.30) ** | 41.90 ± 6.10 | −19.10 (−13.80; −24.40) * |
AFG (n = 22) | MD (OA-NOA) | CG (n = 11) | MD (AFG 1-CG) | ||
---|---|---|---|---|---|
OA | NOA | (95% CI) | DL | (95% CI) | |
Mean ± SD | Mean ± SD | Mean ± SD | |||
Cadence (steps/min) | 99.90 ± 9.80 | 113.70 ± 5.20 | −13.80 (−8.40; −19.10) ** | ||
Speed (m/s) | 0.94 ± 0.10 | 1.18 ± 0.20 | −0.24 (−0.12; −0.36) ** | ||
Peak plantar pressure (kPa/Kg) | 1.28 ± 0.26 | 1.33 ± 0.25 | −0.04 (−0.08; −0.01) * | 1.60 ± 0.23 | −0.32 (−0.50; −0.12) * |
Average plantar pressure (kPa/Kg) | 0.70 ± 0.14 | 0.72 ± 0.15 | −0.02 (−0.03; −0.01) * | 0.86 ± 0.11 | −0.16 (−0.25; −0.06) * |
Contact time (ms) | 822.00 ± 136.00 | 846.80 ± 127.40 | −24.80 (−39.90; −9.60) * | 693.20 ± 127.40 | 128.80 (58.30; 199.10) ** |
AFG (n = 21) | MD (OA-NOA) | CG (n = 11) | MD (AFG 1-CG) | ||
---|---|---|---|---|---|
OA | NOA | (95% CI) | DL | (95% CI) | |
Mean ± SD | Mean ± SD | Mean ± SD | |||
Calf circumference (cm) | 34.80 ± 4.60 | 35.70 ± 4.30 | −0.90 (−2.10; −0.60) ** | 33.70 ± 2.50 | 1.10 (−3.60; 1.40) |
Bimalleolar circumference (cm) | 24.90 ± 2.10 | 24.00 ± 2.10 | 0.90 (0.30; 1.40) * | 21.90 ± 1.60 | 3.00 (1.40; 4.40) ** |
ADF ROM (degrees) | 29.60 ± 9.10 | 37.10 ± 6.10 | −7.40 (−4.30; −10.60) ** | 41.90 ± 6.10 | −12.20 (−5.90; −18.50) ** |
AFG (n = 21) | MD (OA-NOA) | CG (n = 11) | MD (AFG 1-CG) | ||
---|---|---|---|---|---|
OA | NOA | (95% CI) | DL | (95% CI) | |
Mean ± SD | Mean ± SD | Mean ± SD | |||
Cadence (steps/min) | 106.40 ± 7.60 | 113.70 ± 5.20 | −7.30 (−1.90; −12.50) * | ||
Speed (m/s) | 1.01 ± 0.10 | 1.18 ± 0.20 | −0.17 (−0.04; −0.28) * | ||
Peak plantar pressure (kPa/Kg) | 1.33 ± 0.26 | 1.35 ± 0.27 | −0.02 (−0.04; 0.01) | 1.60 ± 0.24 | −0.27 (−0.45; −0.08) * |
Average plantar pressure (kPa/Kg) | 0.71 ± 0.15 | 0.72 ± 0.15 | −0.01 (−0.02; 0.01) | 0.86 ± 0.11 | −0.15 (−0.25; −0.04) * |
Contact time (ms) | 765.80 ± 82.30 | 768.00 ± 89.70 | −2.60 (−9.70; 0.40) | 693.20 ± 127.40 | 72.60 (14.60; 130.50) * |
AFG 6 m (n = 21) | AFG 12 m (n = 21) | MD | ||
---|---|---|---|---|
Mean ± SD | Mean ± SD | (95% CI) | ||
Clinical measures 1 | Calf circumference (cm) | 34.20 ± 4.00 | 34.80 ± 4.60 | −0.6 (−1.40; 0.20) |
Bimalleolar circumference (cm) | 25.10 ± 2.10 | 24.90 ± 2.10 | 0.2 (−0.40; 0.70) | |
ADF ROM (degrees) | 22.80 ± 7.40 | 29.60 ± 9.10 | −6.80 (−10.90; −2.50) * | |
Gait parameters | Cadence (steps/min) | 99.90 ± 9.80 | 106.40 ± 7.60 | −6.50 (−10.20; −2.30) * |
Speed (m/s) | 0.94 ± 0.10 | 1.01 ± 0.10 | −0.07 (−0.11; −0.040) ** | |
Dynamic plantar pressure 1 | Peak plantar pressure (kPa/Kg) | 1.29 ± 0.27 | 1.34 ± 0.26 | −0.05 (−0.08; −0.01) * |
Average plantar pressure (kPa/Kg) | 0.70 ± 0.14 | 0.71 ± 0.15 | −0.01 (−0.02; 0.01) | |
Contact time (ms) | 822.00 ± 136.00 | 765.80 ± 82.30 | 56.20 (9.90; 99.50) * | |
Functional scales | AOFAS Ankle-Hindfoot score | 73.60 ± 11.50 | 84.40 ± 12.40 | 10.80 (7.10; 14.50) ** |
OMAS | 57.30 ± 22.00 | 80.00 ± 25.00 | 22.70 (15.30; 29.90) ** |
Clinical Measurements, Gait Parameters, and Functional Scales | |||||||||
---|---|---|---|---|---|---|---|---|---|
Dynamic Plantar Pressure | Age | ADF ROM | Bimalleolar Circumference | Calf Circumference | Cadence | Speed | AOFAS | OMAS | |
6 months after surgery | Peak plantar pressure (kPa/Kg) | 0.64 | −0.28 | −0.58 * | −0.45 * | 0.21 | 0.14 | −0.13 | −0.11 |
Average plantar pressure (kPa/Kg) | 0.18 | 0.23 | −0.52 * | −0.45 * | 0.23 | 0.18 | −0.23 | −0.27 | |
Contact time (ms) | 0.18 | −0.55 ** | −0.32 | −0.01 | −0.81 ** | −0.81 ** | −0.45 * | −0.4 | |
12 months after surgery | Peak plantar pressure (kPa/Kg) | −0.05 | 0.29 | −0.67 ** | −0.61 ** | 0.17 | 0.15 | −0.23 | −0.16 |
Average plantar pressure (kPa/Kg) | 0.06 | 0.19 | −0.59 ** | −0.52 * | 0.27 | 0.14 | −0.08 | −0.19 | |
Contact time (ms) | 0.21 | −0.26 | −0.37 | 0.15 | −0.68 ** | −0.67 ** | −0.32 | −0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Gorgojo, M.; Salas-Gómez, D.; Sánchez-Juan, P.; Laguna-Bercero, E.; Pérez-Núñez, M.I. Analysis of Dynamic Plantar Pressure and Influence of Clinical-Functional Measures on Their Performance in Subjects with Bimalleolar Ankle Fracture at 6 and 12 Months Post-Surgery. Sensors 2023, 23, 3975. https://doi.org/10.3390/s23083975
Fernández-Gorgojo M, Salas-Gómez D, Sánchez-Juan P, Laguna-Bercero E, Pérez-Núñez MI. Analysis of Dynamic Plantar Pressure and Influence of Clinical-Functional Measures on Their Performance in Subjects with Bimalleolar Ankle Fracture at 6 and 12 Months Post-Surgery. Sensors. 2023; 23(8):3975. https://doi.org/10.3390/s23083975
Chicago/Turabian StyleFernández-Gorgojo, Mario, Diana Salas-Gómez, Pascual Sánchez-Juan, Esther Laguna-Bercero, and María Isabel Pérez-Núñez. 2023. "Analysis of Dynamic Plantar Pressure and Influence of Clinical-Functional Measures on Their Performance in Subjects with Bimalleolar Ankle Fracture at 6 and 12 Months Post-Surgery" Sensors 23, no. 8: 3975. https://doi.org/10.3390/s23083975
APA StyleFernández-Gorgojo, M., Salas-Gómez, D., Sánchez-Juan, P., Laguna-Bercero, E., & Pérez-Núñez, M. I. (2023). Analysis of Dynamic Plantar Pressure and Influence of Clinical-Functional Measures on Their Performance in Subjects with Bimalleolar Ankle Fracture at 6 and 12 Months Post-Surgery. Sensors, 23(8), 3975. https://doi.org/10.3390/s23083975