Modular Design in Triboelectric Sensors: A Review on the Clinical Applications for Real-Time Diagnosis
Abstract
:1. Introduction
2. Biological Energy Collection
2.1. Working Principle of TENGs
2.2. Motion-Based TENGs
2.3. Implantable TENGs
3. Modular Design in Respiratory and Cardiovascular Systems
3.1. Respiratory System
3.1.1. TMSs for Gas Diagnosis
3.1.2. TMSs for Hypoventilation Syndrome and Asthma Diagnosis
3.1.3. TMSs for Intelligent Mask Design
3.2. Cardiovascular System
3.2.1. TMSs for Cardiac Real-Time Diagnosis
3.2.2. TMSs for Pulse Real-Time Diagnosis
4. Modular Design in Musculoskeletal Systems
4.1. Bone System
4.1.1. TMSs for Bone Morphology Diagnosis
4.1.2. TENGs for Bone Repair
4.2. Neuromuscular System
4.2.1. TMSs for Motion System
4.2.2. TMSs for Parkinson’s Diagnosis
Date | Position | Size (cm2) | Materials | Energy Source | Output | Application |
---|---|---|---|---|---|---|
2021 [62] | Wearable | 3 × 3 | Copper, Kapton | Vibration | 80 V | Bone morphology diagnosis |
2022 [63] | Wearable | 2 × 2 | FEP | Movement | 2.5 V | Bone morphology diagnosis |
2021 [64] | Wearable | None | PE/NI | Micro-vibration | 98 V | Bone morphology diagnosis |
2022 [65] | Wearable | None | PVA | Movement | 9.2 V | Bone morphology diagnosis |
2022 [66] | Bone | None | PTFE | Vibration | 30 μA | Bone repair |
2021 [67] | Bone | 3.5 × 1.5 | PLGA/Mg | Vibration | 4.5 V | Bone repair |
2022 [71] | Wearable | 2 × 4.5 | PVA/PA | Movement | 1.33 W·m2 | Motion sensing |
2022 [72] | Wearable | 2.8 × 2 | PDMS | Movement | 200 V | Motion sensing |
2020 [73] | Wearable | None | FEP | Movement | 150 nA | Motion sensing |
2021 [74] | Wearable | 3 × 3 | CCDHG | Movement | 110 V | Parkinson’s diagnosis |
2022 [75] | Wearable | 5 × 5 | GO-PAM | Movement | 26 mW | Parkinson’s diagnosis |
5. Modular Design in Bacteria Diagnosis and Sterilization
5.1. TMSs for Gram-Positive Bacterial Diagnosis
5.2. TENGs for Gram-Positive Bacterial Sterilization
6. Conclusions and Prospect
6.1. TENGs in Energy Collection
6.1.1. Power Output
6.1.2. Durability and Reliability
6.1.3. Multifunctionality
6.2. TENGs in Sensing Systems
6.2.1. Sensitivity and Signal Quality
6.2.2. Biocompatibility and Comfort
6.2.3. Wireless Communication
6.2.4. Wearability and Durability
6.3. TENGs in Bacterial Clinical Diagnosis and Sterilization
6.3.1. Sensitivity and Selectivity
6.3.2. Scalability and Integration
6.3.3. Power Output and Efficiency
6.3.4. Biocompatibility and Safety
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.; Lu, Y.; Mi, Y.; Meng, J.; Wang, X.; Cao, X.; Wang, N. Adaptive Triboelectric Nanogenerators for Long-Term Self-Treatment: A Review. Biosensors 2022, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Parandeh, S.; Etemadi, N.; Kharaziha, M.; Chen, G.; Nashalian, A.; Xiao, X.; Chen, J. Advances in Triboelectric Nanogenerators for Self-Powered Regenerative Medicine. Adv. Funct. Mater. 2021, 31, 2105169. [Google Scholar] [CrossRef]
- Salauddin, M.; Rana, S.S.; Sharifuzzaman, M.; Lee, S.H.; Zahed, M.A.; Do Shin, Y.; Seonu, S.; Song, H.S.; Bhatta, T.; Park, J.Y. Laser-Carbonized MXene/ZiF-67 Nanocomposite as an Intermediate Layer for Boosting the Output Performance of Fabric-Based Triboelectric Nanogenerator. Nano Energy 2022, 100, 107462. [Google Scholar] [CrossRef]
- Bouhlal, A.; Aitabdelouahid, R.; Marzak, A. The Internet of Things for Smart Ports. Procedia Comput. Sci. 2022, 203, 819–824. [Google Scholar] [CrossRef]
- Chang, C.-W.; Lin, Y.-B.; Chen, J.-C. Reporting Mechanisms for Internet of Things. Mob. Netw. Appl. 2022, 27, 118–123. [Google Scholar] [CrossRef]
- Leena, K.; Hiremath, S.G. Cognitive Radio Networks for Internet of Things. In Intelligent Sustainable Systems; Raj, J.S., Palanisamy, R., Perikos, I., Shi, Y., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; Volume 213, pp. 515–526. ISBN 9789811624216. [Google Scholar]
- Meng, K.; Zhao, S.; Zhou, Y.; Wu, Y.; Zhang, S.; He, Q.; Wang, X.; Zhou, Z.; Fan, W.; Tan, X.; et al. A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care. Matter 2020, 2, 896–907. [Google Scholar] [CrossRef]
- Lee, J.H.; Rim, Y.S.; Min, W.K.; Park, K.; Kim, H.T.; Hwang, G.; Song, J.; Kim, H.J. Biocompatible and Biodegradable Neuromorphic Device Based on Hyaluronic Acid for Implantable Bioelectronics. Adv. Funct. Mater. 2021, 31, 2107074. [Google Scholar] [CrossRef]
- Mukherjee, S.; Rananaware, P.; Brahmkhatri, V.; Mishra, M. Polyvinylpyrrolidone-Curcumin Nanoconjugate as a Biocompatible, Non-Toxic Material for Biological Applications. J. Clust. Sci. 2022, 34, 395–414. [Google Scholar] [CrossRef]
- Ran, X.; Luo, F.; Lin, Z.; Zhu, Z.; Liu, C.; Chen, B. Blood Pressure Monitoring via Double Sandwich-Structured Triboelectric Sensors and Deep Learning Models. Nano Res. 2022, 15, 5500–5509. [Google Scholar] [CrossRef]
- Venugopal, K.; Shanmugasundaram, V. Effective Modeling and Numerical Simulation of Triboelectric Nanogenerator for Blood Pressure Measurement Based on Wrist Pulse Signal Using Comsol Multiphysics Software. ACS Omega 2022, 7, 26863–26870. [Google Scholar] [CrossRef]
- Mule, A.R.; Dudem, B.; Patnam, H.; Graham, S.A.; Yu, J.S. Wearable Single-Electrode-Mode Triboelectric Nanogenerator via Conductive Polymer-Coated Textiles for Self-Power Electronics. ACS Sustain. Chem. Eng. 2019, 7, 16450–16458. [Google Scholar] [CrossRef]
- Yan, L.; Mi, Y.; Lu, Y.; Qin, Q.; Wang, X.; Meng, J.; Liu, F.; Wang, N.; Cao, X. Weaved Piezoresistive Triboelectric Nanogenerator for Human Motion Monitoring and Gesture Recognition. Nano Energy 2022, 96, 107135. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, Y.; Sun, C.; Zhao, X.; Jiao, C.; Du, A.; Wang, Q.; Mao, Y.; Liu, B. Wearable Biosensors for Real-Time Sweat Analysis and Body Motion Capture Based on Stretchable Fiber-Based Triboelectric Nanogenerators. Biosens. Bioelectron. 2022, 205, 114115. [Google Scholar] [CrossRef]
- Cinquanta, L.; Infantino, M.; Bizzaro, N. Detecting Autoantibodies by Multiparametric Assays: Impact on Prevention, Diagnosis, Monitoring, and Personalized Therapy in Autoimmune Diseases. J. Appl. Lab. Med. 2022, 7, 137–150. [Google Scholar] [CrossRef]
- Chen, X.; Xie, X.; Liu, Y.; Zhao, C.; Wen, M.; Wen, Z. Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators. Adv. Funct. Mater. 2020, 30, 2004673. [Google Scholar] [CrossRef]
- Xiao, X.; Xiao, X.; Nashalian, A.; Libanori, A.; Fang, Y.; Li, X.; Chen, J. Triboelectric Nanogenerators for Self-Powered Wound Healing. Adv. Healthc. Mater. 2021, 10, 2100975. [Google Scholar] [CrossRef]
- Zhu, G.; Ren, P.; Yang, J.; Hu, J.; Dai, Z.; Chen, H.; Li, Y.; Li, Z. Self-Powered and Multi-Mode Flexible Sensing Film with Patterned Conductive Network for Wireless Monitoring in Healthcare. Nano Energy 2022, 98, 107327. [Google Scholar] [CrossRef]
- Allen, D.M.; Einarsson, G.G.; Tunney, M.M.; Bell, S.E.J. Characterization of Bacteria Using Surface-Enhanced Raman Spectroscopy (SERS): Influence of Microbiological Factors on the SERS Spectra. Anal. Chem. 2022, 94, 9327–9335. [Google Scholar] [CrossRef]
- Zhao, Z.; Lu, Y.; Mi, Y.; Meng, J.; Cao, X.; Wang, N. Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems. Micromachines 2022, 13, 1586. [Google Scholar] [CrossRef]
- Abd El Hamid, M.M.; Shaheen, M.; Mabrouk, M.S.; Omar, Y.M.K. Machine learning for detecting epistasis interactions and its relevance to personalized medicine in alzheimer’s disease: Systematic review. Biomed. Eng. Appl. Basis Commun. 2021, 33, 2150047. [Google Scholar] [CrossRef]
- Feng, H.; Li, H.; Xu, J.; Yin, Y.; Cao, J.; Yu, R.; Wang, B.; Li, R.; Zhu, G. Triboelectric Nanogenerator Based on Direct Image Lithography and Surface Fluorination for Biomechanical Energy Harvesting and Self-Powered Sterilization. Nano Energy 2022, 98, 107279. [Google Scholar] [CrossRef]
- Fernandes, C.; Taurino, I. Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. Sensors 2022, 22, 3062. [Google Scholar] [CrossRef] [PubMed]
- Hanani, Z.; Izanzar, I.; Amjoud, M.; Mezzane, D.; Lahcini, M.; Uršič, H.; Prah, U.; Saadoune, I.; Marssi, M.E.; Luk’yanchuk, I.A.; et al. Lead-Free Nanocomposite Piezoelectric Nanogenerator Film for Biomechanical Energy Harvesting. Nano Energy 2021, 81, 105661. [Google Scholar] [CrossRef]
- Yokota, T.; Fukuda, K.; Someya, T. Recent Progress of Flexible Image Sensors for Biomedical Applications. Adv. Mater. 2021, 33, 2004416. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, L.; He, J.; Hou, X.; Qiao, X.; Xiong, J.; Chou, X. Flexible and Extendable Honeycomb-Shaped Triboelectric Nanogenerator for Effective Human Motion Energy Harvesting and Biomechanical Sensing. Adv. Mater. Technol. 2022, 7, 2100702. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; He, T.; Dong, S.; Lee, C. Switchable Textile-Triboelectric Nanogenerators (S-TENGs) for Continuous Profile Sensing Application without Environmental Interferences. Nano Energy 2020, 69, 104462. [Google Scholar] [CrossRef]
- Ji, S.; Fu, T.; Hu, Y. Effect of Surface Texture on the Output Performance of Lateral Sliding-Mode Triboelectric Nanogenerator. J. Phys. Conf. Ser. 2020, 1549, 042095. [Google Scholar] [CrossRef]
- Manjari Padhan, A.; Hajra, S.; Sahu, M.; Nayak, S.; Joon Kim, H.; Alagarsamy, P. Single-Electrode Mode TENG Using Ferromagnetic NiO-Ti Based Nanocomposite for Effective Energy Harvesting. Mater. Lett. 2022, 312, 131644. [Google Scholar] [CrossRef]
- Opportunities and Challenges in Triboelectric Nanogenerator (TENG) Based Sustainable Energy Generation Technologies: A Mini-Review. Chem. Eng. J. Adv. 2022, 9, 100237. [CrossRef]
- Chen, Q.; Deng, W.; He, J.; Cheng, L.; Ren, P.-G.; Xu, Y. Enhancing Drug Utilization Efficiency via Dish-Structured Triboelectric Nanogenerator. Front. Bioeng. Biotechnol. 2022, 10, 950146. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Shaukat, R.A.; Chougale, M.Y.; Khan, M.U.; Kim, J.; Bae, J. Particle Triboelectric Nanogenerator (P-TENG). Nano Energy 2022, 100, 107475. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, P.; Deng, L.; Zhang, W.; Liu, B.; Ren, D.; Yang, Z. Three-Dimensional Polypyrrole Nanoarrays for Wearable Triboelectric Nanogenerators. ACS Appl. Nano Mater. 2022, 5, 11219–11228. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, Z.; Liu, W.; Wang, C.; Luo, D.; Chao, S.; Li, S.; Li, Z.; Wang, C.; Zhou, J. Promoting Maturation and Contractile Function of Neonatal Rat Cardiomyocytes by Self-Powered Implantable Triboelectric Nanogenerator. Nano Energy 2022, 103, 107798. [Google Scholar] [CrossRef]
- Kim, H.; Choi, S.; Hong, Y.; Chung, J.; Choi, J.; Choi, W.-K.; Park, I.W.; Park, S.H.; Park, H.; Chung, W.-J.; et al. Biocompatible and Biodegradable Triboelectric Nanogenerators Based on Hyaluronic Acid Hydrogel Film. Appl. Mater. Today 2021, 22, 100920. [Google Scholar] [CrossRef]
- Dong, L.; Wang, M.; Wu, J.; Zhu, C.; Shi, J.; Morikawa, H. Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. ACS Appl. Mater. Interfaces 2022, 14, 9126–9137. [Google Scholar] [CrossRef]
- Fu, J.; Xia, K.; Xu, Z. A Triboelectric Nanogenerator Based on Human Fingernail to Harvest and Sense Body Energy. Microelectron. Eng. 2020, 232, 111408. [Google Scholar] [CrossRef]
- Multifunctional Poly(Vinyl Alcohol)/Ag Nanofibers-Based Triboelectric Nanogenerator for Self-Powered MXene/Tungsten Oxide Nanohybrid NO2 Gas Sensor. Nano Energy 2021, 89, 106410. [CrossRef]
- Wang, D.; Zhang, D.; Chen, X.; Zhang, H.; Tang, M.; Wang, J. Multifunctional Respiration-Driven Triboelectric Nanogenerator for Self-Powered Detection of Formaldehyde in Exhaled Gas and Respiratory Behavior. Nano Energy 2022, 102, 107711. [Google Scholar] [CrossRef]
- Peng, X.; Dong, K.; Ning, C.; Cheng, R.; Yi, J.; Zhang, Y.; Sheng, F.; Wu, Z.; Wang, Z.L. All-Nanofiber Self-Powered Skin-Interfaced Real-Time Respiratory Monitoring System for Obstructive Sleep Apnea-Hypopnea Syndrome Diagnosing. Adv. Funct. Mater. 2021, 31, 2103559. [Google Scholar] [CrossRef]
- Respiration-Mediated Self-Switched Triboelectric Nanogenerator for Wearable Point-of-Care Prevention and Alarm of Asthma. Nano Energy 2023, 106, 108058. [CrossRef]
- Lu, Q.; Chen, H.; Zeng, Y.; Xue, J.; Cao, X.; Wang, N.; Wang, Z. Intelligent Facemask Based on Triboelectric Nanogenerator for Respiratory Monitoring. Nano Energy 2022, 91, 106612. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Guo, J.; Illés, B.; Géczy, A.; Istók, B.; Hliva, V.; Török, D.; Kovács, J.G.; Harmati, I.; Molnár, K. Monitoring Multi-Respiratory Indices via a Smart Nanofibrous Mask Filter Based on a Triboelectric Nanogenerator. Nano Energy 2021, 89, 106418. [Google Scholar] [CrossRef]
- Rajabi-Abhari, A.; Kim, J.-N.; Lee, J.; Tabassian, R.; Mahato, M.; Youn, H.J.; Lee, H.; Oh, I.-K. Diatom Bio-Silica and Cellulose Nanofibril for Bio-Triboelectric Nanogenerators and Self-Powered Breath Monitoring Masks. ACS Appl. Mater. Interfaces 2021, 13, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Azarine, A.; Scalbert, F.; Garçon, P. Cardiac Functional Imaging. Presse Médicale 2022, 51, 104119. [Google Scholar] [CrossRef]
- Lu, Z.; Jiang, Z.; Tang, J.; Lin, C.; Zhang, H. Functions and Origins of Cardiac Fat. FEBS J. 2022, 290, 1705–1718. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Park, H.; Kim, M.-K.; Kim, B.; Myoung, H.S.; Kim, T.Y.; Yoon, H.-J.; Kwak, S.S.; Kim, J.; Hwang, T.H.; et al. Self-Rechargeable Cardiac Pacemaker System with Triboelectric Nanogenerators. Nat. Commun. 2021, 12, 4374. [Google Scholar] [CrossRef]
- Weisel, R.D. Tissue Engineering to Restore Cardiac Function. Engineering 2022, 13, 13–17. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B.; Li, N.; Jiang, D.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y.; et al. Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor. Adv. Funct. Mater. 2019, 29, 1807560. [Google Scholar] [CrossRef]
- Zhao, D.; Zhuo, J.; Chen, Z.; Wu, J.; Ma, R.; Zhang, X.; Zhang, Y.; Wang, X.; Wei, X.; Liu, L.; et al. Eco-Friendly in-Situ Gap Generation of No-Spacer Triboelectric Nanogenerator for Monitoring Cardiovascular Activities. Nano Energy 2021, 90, 106580. [Google Scholar] [CrossRef]
- Hu, S.; Shi, Z.; Zheng, R.; Ye, W.; Gao, X.; Zhao, W.; Yang, G. Superhydrophobic Liquid–Solid Contact Triboelectric Nanogenerator as a Droplet Sensor for Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 40021–40030. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Zou, Y.; Rao, W.; Gai, Y.; Xue, J.; Wu, L.; Qu, X.; Liu, Y.; Xu, G.; et al. A Multi-Mode Triboelectric Nanogenerator for Energy Harvesting and Biomedical Monitoring. Nano Energy 2022, 92, 106715. [Google Scholar] [CrossRef]
- Wang, R.; Mu, L.; Bao, Y.; Lin, H.; Ji, T.; Shi, Y.; Zhu, J.; Wu, W. Holistically Engineered Polymer–Polymer and Polymer–Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for High-Performance Triboelectric Devices in Self-Powered Wearable Cardiovascular Monitorings. Adv. Mater. 2020, 32, 2002878. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Bi, Z.; Zhou, B.; Wang, L.; Li, Q.; Turng, L.-S. Expanded Polytetrafluoroethylene/Poly(3-Hydroxybutyrate) (EPTFE/PHB) Triboelectric Nanogenerators and Their Potential Applications as Self-Powered and Sensing Vascular Grafts. Chem. Eng. J. 2023, 455, 140494. [Google Scholar] [CrossRef]
- Chen, G.; Au, C.; Chen, J. Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring. Trends Biotechnol. 2021, 39, 1078–1092. [Google Scholar] [CrossRef]
- Li, G.; Zhu, Q.; Wang, B.; Luo, R.; Xiao, X.; Zhang, Y.; Ma, L.; Feng, X.; Huang, J.; Sun, X.; et al. Rejuvenation of Senescent Bone Marrow Mesenchymal Stromal Cells by Pulsed Triboelectric Stimulation. Adv. Sci. 2021, 8, 2100964. [Google Scholar] [CrossRef]
- Mathew, A.A.; Vivekanandan, S. Design and Simulation of Single-Electrode Mode Triboelectric Nanogenerator-Based Pulse Sensor for Healthcare Applications Using COMSOL Multiphysics. Energy Technol. 2022, 10, 2101130. [Google Scholar] [CrossRef]
- Venugopal, K.; Panchatcharam, P.; Chandrasekhar, A.; Shanmugasundaram, V. Comprehensive Review on Triboelectric Nanogenerator Based Wrist Pulse Measurement: Sensor Fabrication and Diagnosis of Arterial Pressure. ACS Sens. 2021, 6, 1681–1694. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Z.; Gao, F.; Zhao, X.; Xun, X.; Kang, Z.; Liao, Q.; Zhang, Y. Self-Powered Ultrasensitive Pulse Sensors for Noninvasive Multi-Indicators Cardiovascular Monitoring. Nano Energy 2021, 81, 105614. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Xia, Y.; Zhang, G.; Wang, L.; Chen, L.; Wu, Y.; Yang, J.; Wang, Z.L. Flexible Pressure Sensor for High-Precision Measurement of Epidermal Arterial Pulse. Nano Energy 2022, 102, 107710. [Google Scholar] [CrossRef]
- Mazzara, F.; Patella, B.; D’Agostino, C.; Bruno, M.G.; Carbone, S.; Lopresti, F.; Aiello, G.; Torino, C.; Vilasi, A.; O’Riordan, A.; et al. PANI-Based Wearable Electrochemical Sensor for PH Sweat Monitoring. Chemosensors 2021, 9, 169. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Xu, C.; Wang, Z.; Shu, S.; Sun, Z.; Tang, W.; Wang, Z.L. Sensing of Joint and Spinal Bending or Stretching via a Retractable and Wearable Badge Reel. Nat. Commun. 2021, 12, 2950. [Google Scholar] [CrossRef] [PubMed]
- Kou, H.; Wang, H.; Cheng, R.; Liao, Y.; Shi, X.; Luo, J.; Li, D.; Wang, Z.L. Smart Pillow Based on Flexible and Breathable Triboelectric Nanogenerator Arrays for Head Movement Monitoring during Sleep. ACS Appl. Mater. Interfaces 2022, 14, 23998–24007. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, W.; Liu, G.; Bu, T.; Xia, Y.; Xu, S.; Zhang, C.; Zhang, H. Self-Powered Artificial Joint Wear Debris Sensor Based on Triboelectric Nanogenerator. Nano Energy 2021, 85, 105967. [Google Scholar] [CrossRef]
- Barri, K.; Zhang, Q.; Swink, I.; Aucie, Y.; Holmberg, K.; Sauber, R.; Altman, D.T.; Cheng, B.C.; Wang, Z.L.; Alavi, A.H. Patient-Specific Self-Powered Metamaterial Implants for Detecting Bone Healing Progress. Adv. Funct. Mater. 2022, 32, 2203533. [Google Scholar] [CrossRef]
- Wang, B.; Li, G.; Zhu, Q.; Liu, W.; Ke, W.; Hua, W.; Zhou, Y.; Zeng, X.; Sun, X.; Wen, Z.; et al. Bone Repairment via Mechanosensation of Piezo1 Using Wearable Pulsed Triboelectric Nanogenerator. Small 2022, 18, 2201056. [Google Scholar] [CrossRef]
- Yao, G.; Kang, L.; Li, C.; Chen, S.; Wang, Q.; Yang, J.; Long, Y.; Li, J.; Zhao, K.; Xu, W.; et al. A Self-Powered Implantable and Bioresorbable Electrostimulation Device for Biofeedback Bone Fracture Healing. Proc. Natl. Acad. Sci. USA 2021, 118, e2100772118. [Google Scholar] [CrossRef]
- Ye, C.; Liu, D.; Peng, X.; Jiang, Y.; Cheng, R.; Ning, C.; Sheng, F.; Zhang, Y.; Dong, K.; Wang, Z.L. A Hydrophobic Self-Repairing Power Textile for Effective Water Droplet Energy Harvesting. ACS Nano 2021, 15, 18172–18181. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, X.; Geng, W.; Mu, J.; Zhang, L.; Wang, X.; He, J.; Xiong, J.; Chou, X. Human Movement Monitoring and Behavior Recognition for Intelligent Sports Using Customizable and Flexible Triboelectric Nanogenerator. Sci. China Technol. Sci. 2022, 65, 826–836. [Google Scholar] [CrossRef]
- Vera A, D.F.; He, T.; Redoute, J.-M.; Lee, C.; Yuce, M.R. Flexible Forearm Triboelectric Sensors for Parkinson’s Disease Diagnosing and Monitoring. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 4909–4912. [Google Scholar]
- Yang, J.; An, J.; Sun, Y.; Zhang, J.; Zu, L.; Li, H.; Jiang, T.; Chen, B.; Wang, Z.L. Transparent Self-Powered Triboelectric Sensor Based on PVA/PA Hydrogel for Promoting Human-Machine Interaction in Nursing and Patient Safety. Nano Energy 2022, 97, 107199. [Google Scholar] [CrossRef]
- Li, W.; Lu, L.; Kottapalli, A.G.P.; Pei, Y. Bioinspired Sweat-Resistant Wearable Triboelectric Nanogenerator for Movement Monitoring during Exercise. Nano Energy 2022, 95, 107018. [Google Scholar] [CrossRef]
- Yuan, Z.; Shen, G.; Pan, C.; Wang, Z.L. Flexible Sliding Sensor for Simultaneous Monitoring Deformation and Displacement on a Robotic Hand/Arm. Nano Energy 2020, 73, 104764. [Google Scholar] [CrossRef]
- Kim, J.-N.; Lee, J.; Lee, H.; Oh, I.-K. Stretchable and Self-Healable Catechol-Chitosan-Diatom Hydrogel for Triboelectric Generator and Self-Powered Tremor Sensor Targeting at Parkinson Disease. Nano Energy 2021, 82, 105705. [Google Scholar] [CrossRef]
- Wang, Z.; Bu, M.; Xiu, K.; Sun, J.; Hu, N.; Zhao, L.; Gao, L.; Kong, F.; Zhu, H.; Song, J.; et al. A Flexible, Stretchable and Triboelectric Smart Sensor Based on Graphene Oxide and Polyacrylamide Hydrogel for High Precision Gait Recognition in Parkinsonian and Hemiplegic Patients. Nano Energy 2022, 104, 107978. [Google Scholar] [CrossRef]
- Ashby, T.; Staiano, P.; Najjar, N.; Louis, M. Bacterial Pneumonia Infection in Pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2022, 85, 26–33. [Google Scholar] [CrossRef]
- Vannata, B.; Pirosa, M.C.; Bertoni, F.; Rossi, D.; Zucca, E. Bacterial Infection-Driven Lymphomagenesis. Curr. Opin. Oncol. 2022, 34, 454–463. [Google Scholar] [CrossRef]
- Ginja, G.A.; de Campos da Costa, J.P.; Gounella, R.H.; Izquierdo, J.E.E.; Carmo, J.P.; Fonseca, F.J.; Cavallari, M.R.; Junior, O.H.A.; Souza, S.S. de A Humidity Sensor Based on Bacterial Nanocellulose Membrane (BNC). IEEE Sens. J. 2023, 23, 3485–3492. [Google Scholar] [CrossRef]
- Wang, C.; Wang, P.; Chen, J.; Zhu, L.; Zhang, D.; Wan, Y.; Ai, S. Self-Powered Biosensing System Driven by Triboelectric Nanogenerator for Specific Detection of Gram-Positive Bacteria. Nano Energy 2022, 93, 106828. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, P.; Li, J.; Wang, C.; Chen, J.; Zhu, L.; Zhu, H.; Zhang, D. A Self-Powered Microbiosensor System for Specific Bacteria Detection Based on Triboelectric Nanogenerator. Nano Energy 2022, 98, 107317. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, H.; Zhang, W.; Hu, Z.; Li, X.; Liu, J.; Xu, G.; Yang, C. Self-Powered Triboelectric Nanogenerator Driven Nanowires Electrode Array System for the Urine Sterilization. Nano Energy 2022, 96, 107111. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P.; Li, J.; Wang, C.; Wang, J.; Zhang, D.; Peng, Y.; Wang, B.; Wu, Z. Self-Powered Antifouling UVC Pipeline Sterilizer Driven by the Discharge Stimuli Based on the Modified Freestanding Rotary Triboelectric Nanogenerator. Nano Energy 2022, 95, 106969. [Google Scholar] [CrossRef]
- Ditta, A.; Majeed, M.I.; Nawaz, H.; Iqbal, M.A.; Rashid, N.; Abubakar, M.; Akhtar, F.; Nawaz, A.; Hameed, W.; Iqbal, M.; et al. Surface-Enhanced Raman Spectral Investigation of Antibacterial Activity of Zinc 3-Chlorobenzoic Acid Complexes against Gram-Positive and Gram-Negative Bacteria. Photodiagnosis Photodyn. Ther. 2022, 39, 102941. [Google Scholar] [CrossRef] [PubMed]
Date | Position | Size (cm2) | Materials | Energy Source | Output | Application |
---|---|---|---|---|---|---|
2022 [32] | Wearable | None | Cellulose particles | Particle vibration | 70 μW | Electricity generation |
2022 [33] | Wearable | 2 × 2 | 3DPPyNAs | Movement | 20.2 V | Electricity generation |
2022 [34] | Heart | 2 × 1.5 | PTFE, AL | Heartbeat | 20 V | Electricity generation |
2021 [35] | Wearable | 3 × 3 | Hyaluronic acid | Vibration | 20 V | Electricity generation |
Date | Position | Size (cm2) | Key Materials | Energy Source | Output | Application |
---|---|---|---|---|---|---|
2021 [38] | None | 4 × 8 | PVA/Ag | Wind | 530 V | NO2 sensor |
2022 [39] | Nose | 5 × 2 | MXene | Breath | 136 V | Formaldehyde sensor |
2021 [40] | Nose | 4 × 4 | Polyamide 66 | Breath | 330 mW m−2 | Apnoea–hypopnoea syndrome diagnosing |
2023 [41] | Nose | None | PTFE | Breath | 120 V | Respiratory diseases diagnosing |
2022 [42] | Nose | None | FEP/AL | Breath | 8 V | Respiratory sensing |
2021 [43] | Nose | None | PVDF/PAN | Breath | 110 mV | Respiratory sensing |
2021 [44] | Nose | 3.5 × 2.5 | CNF | Breath | 85.5 mW/m2 | Respiratory sensing |
Date | Position | Size (cm2) | Materials | Energy Source | Output | Application |
---|---|---|---|---|---|---|
2019 [49] | Heart | 1 × 1.5 | PTFE | Heartbeat | 6.2 V | Heart disease sensing |
2021 [50] | Pulse | 2 × 2 | Silicone rubber | Vibration | 3.67 V | Cardiovascular sensing |
2020 [51] | Pulse | None | PTFE | Vibration | 90 nA | Cardiovascular sensing |
2022 [52] | Wrist | 5 × 5 | Gallium/indium | Vibration | 15 μW | Pulse real-time diagnosis |
2020 [53] | Wrist | None | PVA | Vibration | 29.2 nA | Pulse real-time diagnosis |
2023 [54] | Wrist | 5 × 5 | PTFE | Vibration | 280 μW | Pulse real-time diagnosis |
Date | Position | Size (cm2) | Materials | Energy Source | Output | Application |
---|---|---|---|---|---|---|
2022 [79] | Clinical | 3.5 × 3.5 | FEP/PVC | Vibration | 165 V | Bacterial sensing |
2022 [80] | Clinical | 1 × 2 | CNT-ConA | Vibration | 160 V | Bacterial sensing |
2022 [81] | Solution | None | PTFE | Vibration | 230 V | Bacterial elimination |
2022 [82] | Solution | None | PET/FEP | Vibration | 26.5 V | Bacterial elimination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Lu, Y.; Mi, Y.; Zhu, Q.; Meng, J.; Wang, X.; Cao, X.; Wang, N. Modular Design in Triboelectric Sensors: A Review on the Clinical Applications for Real-Time Diagnosis. Sensors 2023, 23, 4194. https://doi.org/10.3390/s23094194
Zhao Z, Lu Y, Mi Y, Zhu Q, Meng J, Wang X, Cao X, Wang N. Modular Design in Triboelectric Sensors: A Review on the Clinical Applications for Real-Time Diagnosis. Sensors. 2023; 23(9):4194. https://doi.org/10.3390/s23094194
Chicago/Turabian StyleZhao, Zequan, Yin Lu, Yajun Mi, Qiliang Zhu, Jiajing Meng, Xueqing Wang, Xia Cao, and Ning Wang. 2023. "Modular Design in Triboelectric Sensors: A Review on the Clinical Applications for Real-Time Diagnosis" Sensors 23, no. 9: 4194. https://doi.org/10.3390/s23094194
APA StyleZhao, Z., Lu, Y., Mi, Y., Zhu, Q., Meng, J., Wang, X., Cao, X., & Wang, N. (2023). Modular Design in Triboelectric Sensors: A Review on the Clinical Applications for Real-Time Diagnosis. Sensors, 23(9), 4194. https://doi.org/10.3390/s23094194