On-Chip Compressive Sensing with a Single-Photon Avalanche Diode Array
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Snapshot Compressed Imaging Chip
3.1.1. Basic Compressed Coding Unit
3.1.2. CS-SPAD
3.2. Information Processing Architecture Based on Convolution Neural Network
3.2.1. Reconstruction Branch
3.2.2. Classification Branch
3.2.3. Implementation Details
4. Experiments
4.1. Prototype CS-SPAD Sensor Chip and the Optical System
4.2. Experiment Results
4.2.1. Dataset and End-to-End Network Training
4.2.2. Simulation and CSSPAD Sampling
4.2.3. Real Handwritten Data Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, D.; Xu, F.; Venkatraman, D.; Lussana, R.; Villa, F.; Zappa, F.; Goyal, V.K.; Wong, F.N.; Shapiro, J.H. Photon-efficient imaging with a single-photon camera. Nat. Commun. 2016, 7, 12046. [Google Scholar] [CrossRef] [PubMed]
- Ingle, A.; Velten, A.; Gupta, M. High flux passive imaging with single-photon sensors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6760–6769. [Google Scholar]
- Liu, Y.; Gutierrez-Barragan, F.; Ingle, A.; Gupta, M.; Velten, A. Single-photon camera guided extreme dynamic range imaging. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 1575–1585. [Google Scholar]
- Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.; Dai, J.; Yuan, L.; Wei, Y. Flow-guided feature aggregation for video object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 408–417. [Google Scholar]
- Fang, H.S.; Xie, S.; Tai, Y.W.; Lu, C. Rmpe: Regional multi-person pose estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2334–2343. [Google Scholar]
- Carreira, J.; Zisserman, A. Quo vadis, action recognition? In A new model and the kinetics dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 6299–6308. [Google Scholar]
- Bruschini, C.; Homulle, H.; Antolovic, I.M.; Burri, S.; Charbon, E. Single-photon avalanche diode imagers in biophotonics: Review and outlook. Light. Sci. Appl. 2019, 8, 87. [Google Scholar] [CrossRef]
- Morimoto, K.; Ardelean, A.; Wu, M.L.; Ulku, A.C.; Antolovic, I.M.; Bruschini, C.; Charbon, E. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 2020, 7, 346–354. [Google Scholar] [CrossRef]
- Morimoto, K.; Iwata, J.; Shinohara, M.; Sekine, H.; Abdelghafar, A.; Tsuchiya, H.; Kuroda, Y.; Tojima, K.; Endo, W.; Maehashi, Y.; et al. 3.2 megapixel 3D-stacked charge focusing SPAD for low-light imaging and depth sensing. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 20–22. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Tu, J.H.; Kutz, J.N. Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2015, 2, 165. [Google Scholar] [CrossRef]
- McMackin, L.; Herman, M.A.; Chatterjee, B.; Weldon, M. A high-resolution SWIR camera via compressed sensing. In Proceedings of the Infrared Technology and Applications XXXVIII, Baltimore, MD, USA, 23–27 April 2012; Volume 8353, p. 835303. [Google Scholar]
- Dadkhah, M.; Deen, M.J.; Shirani, S. Block-based CS in a CMOS image sensor. IEEE Sens. J. 2012, 14, 2897–2909. [Google Scholar] [CrossRef]
- Katic, N.; Kamal, M.H.; Kilic, M.; Schmid, A.; Vandergheynst, P.; Leblebici, Y. Power-efficient CMOS image acquisition system based on compressive sampling. In Proceedings of the 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, OH, USA, 4–7 August 2013; pp. 1367–1370. [Google Scholar]
- Majidzadeh, V.; Jacques, L.; Schmid, A.; Vandergheynst, P.; Leblebici, Y. A (256 × 256) pixel 76.7 mW CMOS imager/compressor based on real-time in-pixel compressive sensing. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 2956–2959. [Google Scholar]
- Oike, Y.; El Gamal, A. CMOS image sensor with per-column ΣΔ ADC and programmable compressed sensing. IEEE J. Solid-State Circuits 2012, 48, 318–328. [Google Scholar] [CrossRef]
- Leitner, S.; Wang, H.; Tragoudas, S. Design of scalable hardware-efficient compressive sensing image sensors. IEEE Sens. J. 2017, 18, 641–651. [Google Scholar] [CrossRef]
- Lee, H.; Kim, W.T.; Kim, J.; Chu, M.; Lee, B.G. A compressive sensing CMOS image sensor with partition sampling technique. IEEE Trans. Ind. Electron. 2020, 68, 8874–8884. [Google Scholar] [CrossRef]
- Park, C.; Zhao, W.; Park, I.; Sun, N.; Chae, Y. A 51-pJ/pixel 33.7-dB PSNR 4× compressive CMOS image sensor with column-parallel single-shot compressive sensing. IEEE J. Solid-State Circuits 2021, 56, 2503–2515. [Google Scholar] [CrossRef]
- Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Wayne, M.; Ulku, A.; Ardelean, A.; Mos, P.; Bruschini, C.; Charbon, E. A 500 × 500 dual-gate SPAD imager with 100% temporal aperture and 1 ns minimum gate length for FLIM and phasor imaging applications. IEEE Trans. Electron Devices 2022, 69, 2865–2872. [Google Scholar] [CrossRef]
- Bruschini, C.; Burri, S.; Bernasconi, E.; Milanese, T.; Ulku, A.C.; Homulle, H.; Charbon, E. LinoSPAD2: A 512x1 linear SPAD camera with system-level 135-ps SPTR and a reconfigurable computational engine for time-resolved single-photon imaging. In Proceedings of the Quantum Sensing and Nano Electronics and Photonics XIX, SPIE, San Francisco, CA, USA, 29 January–2 February 2023; Volume 12430, pp. 126–135. [Google Scholar]
- Ma, J.; Zhang, D.; Elgendy, O.A.; Masoodian, S. A 0.19 e-rms read noise 16.7 Mpixel stacked quanta image sensor with 1.1 μm-pitch backside illuminated pixels. IEEE Electron Device Lett. 2021, 42, 891–894. [Google Scholar] [CrossRef]
- Sundar, V.; Ma, S.; Sankaranarayanan, A.C.; Gupta, M. Single-Photon Structured Light. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2022; pp. 17865–17875. [Google Scholar]
- Gutierrez-Barragan, F.; Ingle, A.; Seets, T.; Gupta, M.; Velten, A. Compressive single-photon 3D cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2022; pp. 17854–17864. [Google Scholar]
- Hutchings, S.W.; Johnston, N.; Gyongy, I.; Al Abbas, T.; Dutton, N.A.; Tyler, M.; Chan, S.; Leach, J.; Henderson, R.K. A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging. IEEE J. -Solid-State Circuits 2019, 54, 2947–2956. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Hu, X.; Suo, J.; Yue, T.; Bian, L.; Dai, Q. Patch-primitive driven compressive ghost imaging. Opt. Express 2015, 23, 11092–11104. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. Reconnet: Non-iterative reconstruction of images from compressively sensed measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 449–458. [Google Scholar]
- Katkovnik, V.; Astola, J. Compressive sensing computational ghost imaging. JOSA A 2012, 29, 1556–1567. [Google Scholar] [CrossRef]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef]
- Morris, P.A.; Aspden, R.S.; Bell, J.E.; Boyd, R.W.; Padgett, M.J. Imaging with a small number of photons. Nat. Commun. 2015, 6, 5913. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, K.; Fang, J.; Yan, M.; Wu, E.; Zeng, H. Mid-infrared single-pixel imaging at the single-photon level. Nat. Commun. 2023, 14, 1073. [Google Scholar] [CrossRef]
- Sun, Q.; Dun, X.; Peng, Y.; Heidrich, W. Depth and transient imaging with compressive spad array cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 273–282. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Parmesan, L.; Dutton, N.; Calder, N.J.; Krstajic, N.; Holmes, A.J.; Grant, L.A.; Henderson, R.K. A 256 × 256 SPAD array with in-pixel time to amplitude conversion for fluorescence lifetime imaging microscopy. Memory 2015, 900, M5. [Google Scholar]
- Perenzoni, M.; Massari, N.; Perenzoni, D.; Gasparini, L.; Stoppa, D. A 160 × 120 Pixel Analog-Counting Single-Photon Imager With Time-Gating and Self-Referenced Column-Parallel A/D Conversion for Fluorescence Lifetime Imaging. IEEE J. Solid-State Circuits 2015, 51, 155–167. [Google Scholar]
- Lee, C.; Johnson, B.; Jung, T.; Molnar, A. A 72 × 60 angle-sensitive SPAD imaging array for lens-less FLIM. Sensors 2016, 16, 1422. [Google Scholar] [CrossRef]
- Gyongy, I.; Calder, N.; Davies, A.; Dutton, N.A.; Duncan, R.R.; Rickman, C.; Dalgarno, P.; Henderson, R.K. A 256 × 256, 100-kfps, 61% Fill-Factor SPAD Image Sensor for Time-Resolved Microscopy Applications. IEEE Trans. Electron Devices 2017, 65, 547–554. [Google Scholar] [CrossRef]
- Burri, S.; Bruschini, C.; Charbon, E. LinoSPAD: A compact linear SPAD camera system with 64 FPGA-based TDC modules for versatile 50 ps resolution time-resolved imaging. Instruments 2017, 1, 6. [Google Scholar] [CrossRef]
- Zhang, C.; Lindner, S.; Antolovic, I.M.; Wolf, M.; Charbon, E. A CMOS SPAD imager with collision detection and 128 dynamically reallocating TDCs for single-photon counting and 3D time-of-flight imaging. Sensors 2018, 18, 4016. [Google Scholar] [CrossRef] [PubMed]
- Ulku, A.C.; Bruschini, C.; Antolović, I.M.; Kuo, Y.; Ankri, R.; Weiss, S.; Michalet, X.; Charbon, E. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 6801212. [Google Scholar] [CrossRef]
- Henderson, R.K.; Johnston, N.; Hutchings, S.W.; Gyongy, I.; Al Abbas, T.; Dutton, N.; Tyler, M.; Chan, S.; Leach, J. 5.7 A 256 × 256 40 nm/90 nm CMOS 3D-stacked 120 dB dynamic-range reconfigurable time-resolved SPAD imager. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 106–108. [Google Scholar]
- Okino, T.; Yamada, S.; Sakata, Y.; Kasuga, S.; Takemoto, M.; Nose, Y.; Koshida, H.; Tamaru, M.; Sugiura, Y.; Saito, S.; et al. 5.2 A 1200 × 900 6 μm 450 fps Geiger-mode vertical avalanche photodiodes CMOS image sensor for a 250 m time-of-flight ranging system using direct-indirect-mixed frame synthesis with configurable-depth-resolution down to 10 cm. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 96–98. [Google Scholar]
- Kumagai, O.; Ohmachi, J.; Matsumura, M.; Yagi, S.; Tayu, K.; Amagawa, K.; Matsukawa, T.; Ozawa, O.; Hirono, D.; Shinozuka, Y.; et al. 7.3 A 189 × 600 back-illuminated stacked SPAD direct time-of-flight depth sensor for automotive LiDAR systems. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; Volume 64, pp. 110–112. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Jiang, F.; Zhang, S.; Zhao, D. Deep networks for compressed image sensing. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 877–882. [Google Scholar]
- Chen, Z.; Guo, W.; Feng, Y.; Li, Y.; Zhao, C.; Ren, Y.; Shao, L. Deep-learned regularization and proximal operator for image compressive sensing. IEEE Trans. Image Process. 2021, 30, 7112–7126. [Google Scholar] [CrossRef]
- Cui, W.; Liu, S.; Jiang, F.; Zhao, D. Image Compressed Sensing Using Non-local Neural Network. IEEE Trans. Multimed. 2021, 25, 816–8303. [Google Scholar] [CrossRef]
- Fan, Z.E.; Lian, F.; Quan, J.N. Global Sensing and Measurements Reuse for Image Compressed Sensing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8954–8963. [Google Scholar]
- Mou, C.; Zhang, J. TransCL: Transformer makes strong and flexible compressive learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5236–5251. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Technology | 0.18 m 1P6M CMOS |
Chip size | 2.9 mm × 3.3 mm |
Array size | 32 × 32 |
Pixel size | 15 m |
Counter width | 12 bit |
Dark counts rate | 200 cps |
Dead time | 20 ns |
Power supply | 1.8 V (Digital)/3.3 V (Analog) |
/12 V (SPAD cathode voltage) | |
Power consumption | 10 mW@12 V SPAD cathode voltage |
SPAD Sensor or Imaging System | Year | CS | CS Methods | SPAD Array | Technology (nm) | Pixel Size (m) | Dark Count Rate (cps) |
---|---|---|---|---|---|---|---|
[41] | 2015 | No | None | 130 | 4.2 | 30.8 | |
[42] | 2016 | No | None | 350 | 15 | 580 | |
[43] | 2016 | No | None | 180 | 15 | 2.3 | |
[1] | 2016 | Yes | Optical | 32 × 32 | 350 | 150 | 100 |
[44] | 2017 | No | None | 130 | 14.1 | 6200 | |
[45] | 2017 | No | None | 350 | 17.1 | 1286.6 | |
[46] | 2018 | No | None | 180 | 17 | 113 | |
[36] | 2018 | Yes | Optical | / | 30 | 150 | |
[47] | 2018 | No | None | 180 | 6 | 7.5 | |
[48] | 2019 | No | None | 40/90 | 9.2/38.4 | 20 | |
[10] | 2020 | No | None | 180 | 9.4 | 0.4/2.0 | |
[49] | 2020 | No | None | 65 | 6 | 100 | |
[11] | 2021 | No | None | 40/90 | 6.39 | 1.8 | |
[50] | 2021 | No | None | 40/90 | 10 | 2000 | |
[27] | 2022 | Yes | Simulation | / | / | / | / |
[23] | 2022 | No | None | 180 | 16.38 | 10.2 | |
[35] | 2023 | Yes | Optical | / | 180 | 100 | |
[24] | 2023 | No | None | 180 | 26.2 | <100 | |
Ours | 2023 | Yes | On-chip | 32 × 32 | 180 | 15 | 200 |
Dataset | Average PSNR/dB | Average SSIM | Accuracy/% |
---|---|---|---|
CSSPAD | 27.3039 | 0.9819 | 99.22 |
Simulation | 31.6760 | 0.9930 | 99.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Wang, P.; Kong, X.; Yan, F.; Mao, C.; Yue, T.; Hu, X. On-Chip Compressive Sensing with a Single-Photon Avalanche Diode Array. Sensors 2023, 23, 4417. https://doi.org/10.3390/s23094417
Qiu C, Wang P, Kong X, Yan F, Mao C, Yue T, Hu X. On-Chip Compressive Sensing with a Single-Photon Avalanche Diode Array. Sensors. 2023; 23(9):4417. https://doi.org/10.3390/s23094417
Chicago/Turabian StyleQiu, Chenxi, Peng Wang, Xiangshun Kong, Feng Yan, Cheng Mao, Tao Yue, and Xuemei Hu. 2023. "On-Chip Compressive Sensing with a Single-Photon Avalanche Diode Array" Sensors 23, no. 9: 4417. https://doi.org/10.3390/s23094417
APA StyleQiu, C., Wang, P., Kong, X., Yan, F., Mao, C., Yue, T., & Hu, X. (2023). On-Chip Compressive Sensing with a Single-Photon Avalanche Diode Array. Sensors, 23(9), 4417. https://doi.org/10.3390/s23094417