Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware
Abstract
:1. Introduction
- The development of two contactless camera-based health monitoring architectures for edge devices, estimating heart rate and respiratory rate.
- The evaluation and comparison of five hardware platforms in terms of throughput (FPS), value (throughput/cost), and efficiency (throughput/Watt) metrics, when running camera-based health monitoring software applications.
- Important insights regarding the capabilities of each hardware platform, which can inform the selection of a platform based on the target metric or metrics.
- An overview of the computational cost of each application stage, with identified bottlenecks.
2. Related Work
2.1. Eulerian Video Magnification (EVM)
2.2. Remote Photoplethysmography (rPPG)
2.3. Health Monitoring on Edge Hardware
3. System Architecture
3.1. Edge Device System Architecture
- Source
- 2.
- Read Frame
- 3.
- CNN
- 4.
- Post-Process
- 5.
- Buffer
- 6.
- Signal Process
- 7.
- Overlay/Display
3.2. Eulerian Video Magnification (EVM) Implementation
3.3. Remote Photoplethysmography (rPPG) Implementation
4. Experimental Setup
- PC
- 2.
- RP4_64bit (Raspberry Pi 4 Model B 8 GB) [52]
- 3.
- RP4_32bit (Raspberry Pi 4 Model B 4 GB) [52]
- 4.
- Nano (NVIDIA Jetson Nano) [53]
- 5.
- XavierNX (NVIDIA Jetson Xavier NX) [54]
5. Experimental Results
5.1. Evaluation Metrics
- Latency: The time to execute a stage from start to finish measured in milliseconds (ms). To accurately extract the execution time, each stage was performed multiple times and the average time was logged. Apart from this software process, other OS processes use the hardware resources too (such as CPU cores, cache memory, etc.) and they can add potential noise to our results if not run a sufficient number of times.
- Throughput: Total amount of frames per second (FPS) that can be processed every second. The FPS metric is calculated via Equation (3), where Total Latency is the total execution time including all stages from start to finish for each approach.
- Power Consumption: Power consumption (Watts) was measured with a power meter. Average power consumption was recorded for the idle state and additionally for each of the three resolutions.
- Value: Throughput/cost is calculated with Equation (4), where FPS is the number of processed frames per second as explained previously and cost is the financial price of the hardware board in US dollars.
- Efficiency: Throughput/Watt is calculated with Equation (5), where FPS is the number of processed frames per second as explained previously and Average Power is the mean power consumption reading of the three video resolutions.
5.2. EVM Latency Results
5.3. rPPG Latency Results
5.4. Power Consumption Results
5.5. FPS, Efficiency, and Value Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, Z.; Dey, E.; Ramamurthy, S.R.; Roy, N.; Misra, A. Demo: RhythmEdge: Enabling Contactless Heart Rate Estimation on the Edge. In Proceedings of the 2022 IEEE International Conference on Smart Computing (SMARTCOMP), Helsinki, Finland, 20–24 June 2022. [Google Scholar]
- Aubakir, B.; Nurimbetov, B.; Tursynbek, I.; Varol, H.A. Vital sign monitoring utilizing Eulerian video magnification and thermography. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3527–3530. [Google Scholar] [CrossRef]
- Alghoul, K.; Alharthi, S.; Al Osman, H.; El Saddik, A. Heart Rate Variability Extraction From Videos Signals: ICA vs. EVM Comparison. IEEE Access 2017, 5, 4711–4719. [Google Scholar] [CrossRef]
- Gambi, E.; Agostinelli, A.; Belli, A.; Burattini, L.; Cippitelli, E.; Fioretti, S.; Pierleoni, P.; Ricciuti, M.; Sbrollini, A.; Spinsante, S. Heart Rate Detection Using Microsoft Kinect: Validation and Comparison to Wearable Devices. Sensors 2017, 17, 1776. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.; El Harake, T.N.; Goubran, R.; Knoefel, F. Adaptive Eulerian Video Processing of Thermal Video: An Experimental Analysis. IEEE Trans. Instrum. Meas. 2017, 66, 2516–2524. [Google Scholar] [CrossRef]
- Rumiński, J. Reliability of Pulse Measurements in Videoplethysmography. Metrol. Meas. Syst. 2016, 23, 359–371. [Google Scholar] [CrossRef]
- Kinnunen, H.; Rantanen, A.; Kenttä, T.; Koskimäki, H. Feasible assessment of recovery and cardiovascular health: Accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol. Meas. 2020, 41, 04NT01. [Google Scholar] [CrossRef]
- Madhav, K.V.; Ram, M.R.; Krishna, E.H.; Reddy, K.N. Estimation of respiratory rate from principal components of photoplethysmographic signals. In Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2010, Kuala Lumpur, Malaysia, 30 November–2 December 2010; pp. 311–314. [Google Scholar] [CrossRef]
- Karlen, W.; Raman, S.; Ansermino, J.M.; Dumont, G.A. Multiparameter Respiratory Rate Estimation From the Photoplethysmogram. IEEE Trans. Biomed. Eng. 2013, 60, 1946–1953. [Google Scholar] [CrossRef]
- Ni, A.; Azarang, A.; Kehtarnavaz, N. A Review of Deep Learning-Based Contactless Heart Rate Measurement Methods. Sensors 2021, 21, 3719. [Google Scholar] [CrossRef]
- Dosso, Y.S.; Bekele, A.; Green, J.R. Eulerian Magnification of Multi-Modal RGB-D Video for Heart Rate Estimation. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar]
- Wu, H.-Y.; Rubinstein, M.; Shih, E.; Guttag, J.; Durand, F.; Freeman, W. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 2012, 31, 1–8. [Google Scholar] [CrossRef]
- Froesel, M.; Goudard, Q.; Hauser, M.; Gacoin, M.; Ben Hamed, S. Automated video-based heart rate tracking for the anesthetized and behaving monkey. Sci. Rep. 2020, 10, 17940. [Google Scholar] [CrossRef]
- Laurie, J.; Higgins, N.; Peynot, T.; Fawcett, L.; Roberts, J. An evaluation of a video magnification-based system for respiratory rate monitoring in an acute mental health setting. Int. J. Med. Inform. 2021, 148, 104378. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Yang, X.; Wen, C. Heart rate measurement based on video acceleration magnification. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 1179–1182. [Google Scholar] [CrossRef]
- Liu, L.; Luo, J.; Zhang, J.; Chen, X. Enhanced Eulerian video magnification. In Proceedings of the 2014 7th International Congress on Image and Signal Processing, CISP 2014, Dalian, China, 14–16 October 2014; pp. 50–54. [Google Scholar] [CrossRef]
- Bennett, S.L.; Goubran, R.; Knoefel, F. Adaptive eulerian video magnification methods to extract heart rate from thermal video. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Dasari, A.; Prakash, S.K.A.; Jeni, L.A.; Tucker, C.S. Evaluation of biases in remote photoplethysmography methods. NPJ Digit. Med. 2021, 4, 91. [Google Scholar] [CrossRef]
- Premkumar, S.; Hemanth, D.J. Intelligent Remote Photoplethysmography-Based Methods for Heart Rate Estimation from Face Videos: A Survey. Informatics 2022, 9, 57. [Google Scholar] [CrossRef]
- van Es, V.A.A.; Lopata, R.G.P.; Scilingo, E.P.; Nardelli, M. Contactless Cardiovascular Assessment by Imaging Photoplethysmography: A Comparison with Wearable Monitoring. Sensors 2023, 23, 1505. [Google Scholar] [CrossRef] [PubMed]
- Haugg, F.; Elgendi, M.; Menon, C. Effectiveness of Remote PPG Construction Methods: A Preliminary Analysis. Bioengineering 2022, 9, 485. [Google Scholar] [CrossRef]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [PubMed]
- Poh, M.-Z.; McDuff, D.J.; Picard, R.W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 2010, 18, 10762–10774. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Rumiński, J.; Kocejko, T.; Nowak, J. Measuring pulse rate with a webcam—A non-contact method for evaluating cardiac activity. In Proceedings of the 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland, 18–21 September 2011; pp. 405–410. [Google Scholar]
- de Haan, G.; Jeanne, V. Robust Pulse Rate From Chrominance-Based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef]
- de Haan, G.; van Leest, A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiol. Meas. 2014, 35, 1913–1926. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic Principles of Remote PPG. IEEE Trans. Biomed. Eng. 2017, 64, 1479–1491. [Google Scholar] [CrossRef]
- Pilz, C.S.; Zaunseder, S.; Krajewski, J.; Blazek, V. Local Group Invariance for Heart Rate Estimation from Face Videos in the Wild. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1335–13358. [Google Scholar] [CrossRef]
- Casado, C.A.; López, M.B. Face2PPG: An unsupervised pipeline for blood volume pulse extraction from faces. arXiv 2022, arXiv:2202.04101. [Google Scholar]
- Botina-Monsalve, D.; Benezeth, Y.; Miteran, J. Performance analysis of remote photoplethysmography deep filtering using long short-term memory neural network. Biomed. Eng. Online 2022, 21, 69. [Google Scholar] [CrossRef] [PubMed]
- Curran, T.; Liu, X.; McDuff, D.; Patel, S.; Yang, E. Camera-based remote photoplethysmography to measure heart rate and blood pressure in ambulatory patients with cardiovascular disease: Preliminary analysis. J. Am. Coll. Cardiol. 2023, 81, 2301. [Google Scholar] [CrossRef]
- Pourbemany, J.; Essa, A.; Zhu, Y. Real-Time Video-based Heart and Respiration Rate Monitoring. In Proceedings of the NAECON 2021—IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 16–19 August 2021. [Google Scholar]
- Negishi, T.; Abe, S.; Matsui, T.; Liu, H.; Kurosawa, M.; Kirimoto, T.; Sun, G. Contactless Vital Signs Measurement System Using RGB-Thermal Image Sensors and Its Clinical Screening Test on Patients with Seasonal Influenza. Sensors 2020, 20, 2171. [Google Scholar] [CrossRef] [PubMed]
- Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; van Baalen, M.; Blankevoort, T. A White Paper on Neural Network Quantization. arXiv 2021, arXiv:2106.08295. [Google Scholar]
- Kolosov, D.; Kelefouras, V.; Kourtessis, P.; Mporas, I. Anatomy of Deep Learning Image Classification and Object Detection on Commercial Edge Devices: A Case Study on Face Mask Detection. IEEE Access 2022, 10, 109167–109186. [Google Scholar] [CrossRef]
- Kolosov, D.; Mporas, I. Face Masks Usage Monitoring for Public Health Security using Computer Vision on Hardware. In Proceedings of the 2021 International Carnahan Conference on Security Technology (ICCST), Hatfield, UK, 11–15 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, J.-W.; Lu, M.-H.; Lin, Y.-H. A Contactless Healthcare System with Face Recognition. In Proceedings of the 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), Yichang, China, 6–9 September 2019; pp. 296–299. [Google Scholar] [CrossRef]
- Huang, H.-W.; Rupp, P.; Chen, J.; Kemkar, A.; Khandelwal, N.; Ballinger, I.; Chai, P.; Traverso, G. Cost-Effective Solution of Remote Photoplethysmography Capable of Real-Time, Multi-Subject Monitoring with Social Distancing. In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chou, N.-K.; Lin, G.-Y.; Li, M.-H.; Lin, Y.-H. A Real-Time Contactless Pulse Rate and Motion Status Monitoring System Based on Complexion Tracking. Sensors 2017, 17, 1490. [Google Scholar] [CrossRef]
- David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems. arXiv 2021, arXiv:2010.08678v3, 800–811. [Google Scholar]
- Shafi, O.; Rai, C.; Sen, R.; Ananthanarayanan, G. Demystifying TensorRT: Characterizing Neural Network Inference Engine on Nvidia Edge Devices. In Proceedings of the 2021 IEEE International Symposium on Workload Characterization (IISWC), Storrs, CT, USA, 7–9 November 2021; pp. 226–237. [Google Scholar] [CrossRef]
- Retsinas, G.; Elafrou, A.; Goumas, G.; Maragos, P. Weight Pruning via Adaptive Sparsity Los. arXiv 2020, arXiv:2006.02768. [Google Scholar]
- Kokhazadeh, M.; Keramidas, G.; Kelefouras, V.; Stamoulis, I. A Design Space Exploration Methodology for Enabling Tensor Train Decomposition in Edge Devices. In Embedded Computer Systems: Architectures, Modeling, and Simulation, Proceedings of the 22nd International Conference, SAMOS 2022, Samos, Greece, 3–7 July 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 173–186. [Google Scholar] [CrossRef]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.-L.; Yong, M.G.; Lee, J.; et al. MediaPipe: A Framework for Building Perception Pipelines. arXiv 2019, arXiv:1906.08172. [Google Scholar]
- Bazarevsky, V.; Kartynnik, Y.; Vakunov, A.; Raveendran, K.; Grundmann, M. BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs. arXiv 2019, arXiv:1907.05047. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar] [CrossRef]
- Kartynnik, Y.; Ablavatski, A.; Grishchenko, I.; Grundmann, M. Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs. arXiv 2019, arXiv:1907.06724. [Google Scholar]
- Getting Image Orientation and Bounding Box Coordinates—Amazon Rekognition. Available online: https://docs.aws.amazon.com/rekognition/latest/dg/images-orientation.html (accessed on 16 April 2023).
- Face mesh. Available online: https://developers.google.com/static/ar/images/augmented-faces/augmented-faces-468-point-face-mesh.png (accessed on 24 April 2023).
- Sanyal, S.; Nundy, K.K. Algorithms for Monitoring Heart Rate and Respiratory Rate From the Video of a User’s Face. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–11. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lin, Y.-H. A study of color illumination effect on the SNR of rPPG signals. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 4301–4304. [Google Scholar] [CrossRef]
- Raspberry Pi 4 Model B Specifications. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (accessed on 13 March 2023).
- Jetson Nano Developer Kit. Available online: https://developer.nvidia.com/blog/jetson-nano-ai-computing/ (accessed on 13 March 2023).
- Jetson Xavier NX Series. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/ (accessed on 13 March 2023).
rPPG Method | Summary |
---|---|
GREEN [22] | Of the three channels, the green channel is most likely the PPG signal and can be used as its estimate. |
ICA [23] | To recover three separate source signals, independent component analysis (ICA) is applied to the RGB signal. A significant rPPG signal was usually found in the second component. |
PCA [24] | Principal component analysis (PCA) is applied to distinguish the rPPG signal from the RGB signal. |
CHROM [25] | The chrominance (CHROM)-based method generates an rPPG signal by removing the noise caused by the light reflection using a ratio of the normalized colour channels. |
PBV [26] | PBV calculates the rPPG signal with blood-volume pulse fluctuations in the RGB signal to identify the pulse-induced colour changes from motion |
POS [27] | The plane-orthogonal-to-skin (POS) method uses the plane orthogonal to the skin tone in the RGB signal to extract the rPPG signal. |
LGI [28] | The local group invariance (LGI) calculates an rPPG signal with a robust algorithm as a result of local transformations. |
OMIT [29] | Orthogonal matrix image transformation (OMIT) recovers the rPPG signal by generating an orthogonal matrix with linearly uncorrelated components representing the orthonormal components in the RGB signal, relying on matrix decomposition. |
# | Hardware | CPU | Cores/Frequency | Memory | AI Accelerator |
---|---|---|---|---|---|
1 | PC | Intel i9-9900K | 8/3.6 GHz | 64 GB (LPDDR4) | GPU: GTX1060 |
2 | RP4_32bit | ARM Cortex-A72 | 4/1.5 GHz | 4 GB (LPDDR4) | N/A |
3 | RP4_64bit | ARM Cortex-A72 | 4/1.5 GHz | 8 GB (LPDDR4) | N/A |
5 | Nano | ARM Cortex-A57 | 4/1.48 GHz | 4 GB (LPDDR4) | GPU: 128-core Maxwell |
6 | XavierNX | Carmel ARM®v8.2 | 6/1.42–1.9 GHz | 8 GB (LPDDR4) | GPU: 384-core Volta |
Hardware | Resolution | Read Frame (ms) | CNN (ms) | Post-Process (ms) | Signal Process (ms) | Overlay/Display (ms) | FPS | Average FPS |
---|---|---|---|---|---|---|---|---|
PC | 1920 × 1080 | 1.66 | 2.63 | 0.16 | 2.61 | 0.36 | 134.18 | 156.5 |
1280 × 720 | 0.76 | 2.38 | 0.14 | 2.63 | 0.36 | 158.96 | ||
640 × 360 | 0.17 | 2.22 | 0.26 | 2.64 | 0.36 | 176.4 | ||
RP4_32bit | 1920 × 1080 | 29.66 | 26.6 | 3.30 | 21.45 | 9.34 | 11.05 | 11.7 |
1280 × 720 | 13.67 | 24.22 | 3.30 | 29.17 | 17.19 | 11.41 | ||
640 × 360 | 4.19 | 24.93 | 3.45 | 29.08 | 17.24 | 12.66 | ||
RP4_64bit | 1920 × 1080 | 15.55 | 20.25 | 1.34 | 13.41 | 5.08 | 17.94 | 22.3 |
1280 × 720 | 8.21 | 16.15 | 1.33 | 13.28 | 5.16 | 22.64 | ||
640 × 360 | 2.41 | 14.94 | 2.16 | 13.50 | 5.12 | 26.20 | ||
Nano | 1920 × 1080 | 13.7 | 15.37 | 1.40 | 14.19 | 5.64 | 19.67 | 24.0 |
1280 × 720 | 6.89 | 12.41 | 1.42 | 14.48 | 5.63 | 24.28 | ||
640 × 360 | 1.91 | 11.13 | 2.02 | 14.44 | 5.58 | 28.18 | ||
XavierNX:6 | 1920 × 1080 | 15.89 | 12.26 | 1.41 | 5.31 | 2.00 | 26.43 | 39.2 |
1280 × 720 | 8.27 | 8.86 | 1.28 | 5.71 | 2.18 | 37.34 | ||
640 × 360 | 1.47 | 6.92 | 2.96 | 4.61 | 2.04 | 53.91 | ||
XavierNX:8 | 1920 × 1080 | 13.35 | 9.68 | 1.06 | 5.54 | 2.43 | 30.60 | 39.3 |
1280 × 720 | 6.83 | 7.68 | 1.04 | 5.77 | 2.59 | 40.81 | ||
640 × 360 | 1.44 | 7.98 | 3.32 | 5.59 | 2.52 | 46.57 |
Hardware | Resolution | Read Frame (ms) | CNN (ms) | Post-Process (ms) | Signal Process (ms) | Overlay/Display (ms) | FPS | Average FPS |
---|---|---|---|---|---|---|---|---|
PC | 1920 × 1080 | 1.56 | 3.51 | 1.08 | 2.78 | 0.35 | 107.24 | 121.8 |
1280 × 720 | 0.68 | 3.26 | 1.00 | 2.78 | 0.35 | 123.19 | ||
640 × 360 | 0.19 | 3.02 | 1.02 | 2.79 | 0.36 | 134.90 | ||
RP4_32bit | 1920 × 1080 | 30.66 | 63.98 | 12.65 | 21.67 | 7.93 | 7.29 | 7.6 |
1280 × 720 | 14.55 | 61.37 | 10.84 | 29.38 | 16.55 | 7.52 | ||
640 × 360 | 4.34 | 61.58 | 12.75 | 29.37 | 16.52 | 8.01 | ||
RP4_64bit | 1920 × 1080 | 15.30 | 28.91 | 6.15 | 13.05 | 4.59 | 14.68 | 17.2 |
1280 × 720 | 8.12 | 25.55 | 6.19 | 13.11 | 4.72 | 17.30 | ||
640 × 360 | 2.47 | 24.36 | 6.46 | 13.20 | 4.64 | 19.52 | ||
Nano | 1920 × 1080 | 13.29 | 54.27 | 10.82 | 13.99 | 4.37 | 10.26 | 11.4 |
1280 × 720 | 6.32 | 50.12 | 10.75 | 14.07 | 4.36 | 11.59 | ||
640 × 360 | 1.92 | 49.68 | 10.87 | 14.00 | 4.40 | 12.26 | ||
XavierNX:6 | 1920 × 1080 | 11.16 | 12.76 | 4.67 | 4.71 | 1.86 | 27.62 | 36.4 |
1280 × 720 | 4.59 | 10.55 | 4.45 | 4.79 | 2.00 | 37.05 | ||
640 × 360 | 1.38 | 9.66 | 4.82 | 4.06 | 1.95 | 44.48 | ||
XavierNX:8 | 1920 × 1080 | 10.45 | 12.05 | 5.28 | 5.19 | 2.33 | 27.76 | 32.7 |
1280 × 720 | 5.39 | 11.48 | 5.09 | 5.17 | 2.40 | 33.08 | ||
640 × 360 | 1.70 | 10.98 | 5.79 | 5.30 | 2.43 | 37.19 |
Hardware | Resolution | Read Frame (ms) | CNN (ms) | Post-Process (ms) | Signal Process (ms) | Overlay/Display (ms) | FPS | Average FPS |
---|---|---|---|---|---|---|---|---|
PC | 1920 × 1080 | 1.69 | 3.78 | 11.44 | 0.33 | 0.82 | 49.37 | 66.1 |
1280 × 720 | 0.94 | 3.69 | 7.49 | 0.41 | 0.46 | 71.98 | ||
640 × 360 | 0.53 | 7.28 | 4.40 | 0.85 | 0.38 | 77.03 | ||
RP4_32bit | 1920 × 1080 | 37.04 | 62.62 | 86.02 | 1.58 | 8.50 | 3.95 | 11.3 |
1280 × 720 | 16.50 | 36.50 | 36.40 | 1.45 | 4.10 | 8.32 | ||
640 × 360 | 4.51 | 22.86 | 9.40 | 1.54 | 2.84 | 21.71 | ||
RP4_64bit | 1920 × 1080 | 18.75 | 24.33 | 54.92 | 1.50 | 5.21 | 8.17 | 19.3 |
1280 × 720 | 8.62 | 17.90 | 25.25 | 1.40 | 3.08 | 15.41 | ||
640 × 360 | 2.38 | 14.00 | 6.61 | 1.45 | 2.77 | 34.44 | ||
Nano | 1920 × 1080 | 14.54 | 24.48 | 64.05 | 1.87 | 2.84 | 8.42 | 22.2 |
1280 × 720 | 6.48 | 15.78 | 29.30 | 1.74 | 2.06 | 16.61 | ||
640 × 360 | 1.91 | 10.44 | 7.85 | 1.70 | 1.63 | 41.46 | ||
XavierNX:6 | 1920 × 1080 | 10.94 | 16.09 | 33.66 | 2.20 | 3.18 | 13.71 | 34.6 |
1280 × 720 | 4.94 | 12.19 | 14.12 | 1.65 | 2.56 | 26.12 | ||
640 × 360 | 1.39 | 7.95 | 3.72 | 1.65 | 2.20 | 63.87 | ||
XavierNX:8 | 1920 × 1080 | 10.26 | 14.97 | 37.14 | 1.96 | 3.23 | 13.20 | 31.0 |
1280 × 720 | 5.00 | 11.44 | 16.32 | 1.93 | 2.91 | 24.69 | ||
640 × 360 | 1.42 | 8.37 | 4.47 | 1.90 | 3.00 | 55.18 |
Hardware | Resolution | Read Frame (ms) | CNN (ms) | Post-Process (ms) | Signal Process (ms) | Overlay/Display (ms) | FPS | Average FPS |
---|---|---|---|---|---|---|---|---|
PC | 1920 × 1080 | 1.70 | 4.40 | 38.04 | 0.31 | 0.91 | 22.11 | 41.7 |
1280 × 720 | 0.86 | 3.99 | 18.27 | 0.31 | 0.53 | 43.17 | ||
640 × 360 | 0.37 | 6.57 | 10.68 | 0.55 | 0.34 | 59.76 | ||
RP4_32bit | 1920 × 1080 | 37.78 | 100.59 | 316.65 | 1.46 | 8.49 | 2.15 | 5.2 |
1280 × 720 | 16.93 | 74.52 | 145.67 | 1.48 | 4.17 | 4.13 | ||
640 × 360 | 4.74 | 60.64 | 39.57 | 1.53 | 2.69 | 9.36 | ||
RP4_64bit | 1920 × 1080 | 18.64 | 33.58 | 169.92 | 1.39 | 5.00 | 4.38 | 10.6 |
1280 × 720 | 8.71 | 27.75 | 78.04 | 1.44 | 3.34 | 8.43 | ||
640 × 360 | 2.60 | 23.74 | 22.78 | 1.43 | 2.64 | 19.04 | ||
Nano | 1920 × 1080 | 14.29 | 62.85 | 186.31 | 1.73 | 2.78 | 3.79 | 7.9 |
1280 × 720 | 6.43 | 54.31 | 88.08 | 1.74 | 2.06 | 6.76 | ||
640 × 360 | 1.91 | 49.15 | 28.14 | 1.73 | 1.63 | 13.04 | ||
XavierNX:6 | 1920 × 1080 | 10.13 | 17.90 | 103.48 | 1.69 | 2.85 | 7.51 | 19.5 |
1280 × 720 | 4.50 | 13.18 | 49.42 | 1.59 | 2.52 | 14.54 | ||
640 × 360 | 1.39 | 9.86 | 15.04 | 1.56 | 2.24 | 36.45 | ||
XavierNX:8 | 1920 × 1080 | 9.60 | 16.97 | 136.13 | 1.96 | 3.71 | 6.04 | 15.8 |
1280 × 720 | 4.59 | 13.24 | 65.53 | 1.88 | 3.17 | 11.67 | ||
640 × 360 | 1.40 | 10.78 | 19.71 | 1.85 | 3.05 | 29.61 |
Hardware | Idle (Watt) | 1920 × 1080 (Watt) | 1280 × 720 (Watt) | 640 × 360 (Watt) | Average (Watt) |
---|---|---|---|---|---|
PC | 49.4 | 120 | 111 | 104 | 111.7 |
RP4_32bit | 3.4 | 5.2 | 4.9 | 4.6 | 4.9 |
RP4_64bit | 3.4 | 5.8 | 5.5 | 5.2 | 5.5 |
Nano | 3.8 | 6.5 | 5.9 | 5.7 | 6.0 |
XavierNX:6 | 6.7 | 9.5 | 9.1 | 9.1 | 9.2 |
XavierNX:8 | 6.9 | 10.0 | 9.9 | 10.0 | 10.0 |
Hardware | EVM | rPPG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BlazeFace | FaceMesh | BlazeFace | FaceMesh | |||||||||
FPS | Efficiency | Value | FPS | Efficiency | Value | FPS | Efficiency | Value | FPS | Efficiency | Value | |
PC | 156.5 | 1.40 | 0.08 | 121.8 | 1.09 | 0.06 | 66.1 | 0.59 | 0.03 | 41.7 | 0.37 | 0.02 |
RP4_32bit | 11.7 | 2.39 | 0.21 | 7.6 | 1.55 | 0.14 | 11.3 | 2.31 | 0.21 | 5.2 | 1.06 | 0.09 |
RP4_64bit | 22.3 | 4.05 | 0.30 | 17.2 | 3.12 | 0.23 | 19.3 | 3.52 | 0.26 | 10.6 | 1.93 | 0.14 |
Nano | 24.0 | 3.99 | 0.16 | 11.4 | 1.88 | 0.08 | 22.2 | 3.67 | 0.15 | 7.9 | 1.30 | 0.05 |
XavierNX:6 | 39.2 | 4.25 | 0.10 | 36.4 | 3.94 | 0.09 | 34.6 | 3.74 | 0.09 | 19.5 | 2.11 | 0.05 |
XavierNX:8 | 39.3 | 3.95 | 0.10 | 32.7 | 3.28 | 0.08 | 31.0 | 3.11 | 0.08 | 15.8 | 1.58 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolosov, D.; Kelefouras, V.; Kourtessis, P.; Mporas, I. Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware. Sensors 2023, 23, 4550. https://doi.org/10.3390/s23094550
Kolosov D, Kelefouras V, Kourtessis P, Mporas I. Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware. Sensors. 2023; 23(9):4550. https://doi.org/10.3390/s23094550
Chicago/Turabian StyleKolosov, Dimitrios, Vasilios Kelefouras, Pandelis Kourtessis, and Iosif Mporas. 2023. "Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware" Sensors 23, no. 9: 4550. https://doi.org/10.3390/s23094550
APA StyleKolosov, D., Kelefouras, V., Kourtessis, P., & Mporas, I. (2023). Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware. Sensors, 23(9), 4550. https://doi.org/10.3390/s23094550