Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Source and Bias Powers on Etch Rate and Etch Selectivity
3.2. Effect of the O2/NF3 Gas Ratio on Etch Rates and Etch Selectivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeo, Y.C.; Lu, Q.; Ranade, P.; Takeuchi, H.; Yang, K.J.; Polishchuk, I.; King, T.J.; Hu, C.; Song, S.C.; Luan, H.F.; et al. Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric. IEEE Electron Device Lett. 2001, 22, 227–229. [Google Scholar]
- Silvagni, A. 3D NAND flash based on planar cells. Computers 2017, 6, 28. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, D.W.; Lee, S.H.; Park, S.K.; Kim, Y.; Kim, H.; Kim, Y.G.; Cho, S.; Park, B.G. Characterization of the vertical position of the trapped charge in charge-trap flash memory. J. Semicond. Technol. Sci. 2017, 17, 167–173. [Google Scholar]
- Tzeng, S.D.; Gwo, S. Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy. J. Appl. Phys. 2006, 100, 023711. [Google Scholar] [CrossRef]
- Kim, S.B.; Choi, D.G.; Hong, T.E.; Park, T.S.; Kim, D.S.; Song, Y.W.; Kim, C.I. Study on self-aligned contact oxide etching using C5F8/O2/Ar and C5F8/O2/Ar/CH2F2 plasma. J. Vac. Sci. Technol. A 2005, 23, 953–958. [Google Scholar] [CrossRef]
- Schaepkens, M.; Standaert, T.E.F.M.; Rueger, N.R.; Sebel, P.G.M.; Oehrlein, G.S.; Cook, J.M. Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2 -to-Si mechanism. J. Vac. Sci. Technol. A 1999, 17, 26–37. [Google Scholar] [CrossRef]
- Tatsumi, T.; Matsui, M.; Okigawa, M.; Sekine, M. Control of surface reactions in high-performance SiO2 etching. J. Vac. Technol. B 2000, 18, 1897–1902. [Google Scholar] [CrossRef]
- Abe, H.; Yoneda, M.; Fujiwara, N. Developments of plasma etching technology for fabricating semiconductor devices. Jpn. J. Appl. Phys. 2008, 47, 1435–1455. [Google Scholar] [CrossRef]
- Oehrlein, G.S.; Hamaguchi, S. Foundations of low-temperature plasma enhanced materials synthesis and etching. Plasma Source Sci. Technol. 2018, 27, 023001. [Google Scholar] [CrossRef]
- Aritome, S. NAND Flash Memory Technologies, 1st ed.; John Wiley & Sons: Hoboken, NJ, US, 2015; p. 273. [Google Scholar]
- Park, K.T.; Nam, S.; Kim, D.; Kwak, P.; Lee, D.; Choi, Y.H.; Choi, M.H.; Kwak, D.H.; Kim, D.H.; Kim, M.S.; et al. Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming. IEEE J. Solid-State Circ. 2015, 50, 204–213. [Google Scholar] [CrossRef]
- Kim, J.; Hong, A.J.; Kim, S.M.; Shin, K.S.; Song, E.B.; Hwang, Y.; Xiu, F.; Galatsis, K.; Chui, C.O.; Candler, R.N.; et al. A stacked memory device on logic 3D technology for ultra-high-density data storage. Nanotechnology 2011, 22, 254006. [Google Scholar] [CrossRef]
- Song, J.; Park, K.; Jeon, S.; Lee, J.; Kim, T. Development of a novel wet cleaning solution for Post-CMP SiO2 and Si3N4 films. Mater. Sci. Semicond. Process. 2022, 140, 10635. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, S.; Wu, Y.; Hang, T.; Ling, H.; Guo, J.; Wang, S.; Li, M. Study on the SiO2 wet-etching mechanism using γ-ureidopropyltriethoxysilane as an inhibitor for 3D NAND fabrication. ACS Appl. Electron. Mater. 2024, 6, 2788–2795. [Google Scholar] [CrossRef]
- Kim, T.; Park, T.; Lim, S. Improvement of Si3N4/SiO2 etching selectivity through the passivation of SiO2 surface in aromatic carboxylic acid-added H3PO4 solutions for the 3D NAND integration. Appl. Surf. Sci. 2023, 619, 156758. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 289–299. [Google Scholar]
- He, B.; Yang, Y.; Yuen, M.F.; Chen, X.F.; Lee, C.S.; Zhang, W.J. Vertical nanostructure arrays by plasma etching for applications in biology, energy, and electronics. Nano Today 2013, 8, 265–289. [Google Scholar] [CrossRef]
- Stephen, J.F. An overview of dry etching damage and contamination effects. J. Electrochem. Soc. 1990, 137, 3885–3892. [Google Scholar]
- Pang, S.W. Surface damage on GaAs induced by reactive ion etching and sputter etching. J. Electrochem. Soc. 1986, 133, 784–787. [Google Scholar] [CrossRef]
- Standaert, T.E.F.M.; Hedlund, C.; Joseph, E.A.; Oehrlein, G.S.; Dalton, T.J. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide. J. Vac. Sci. Technol. A 2004, 22, 53–60. [Google Scholar] [CrossRef]
- Machima, P.; Hershkowitz, N. SiO2 and Si3N4 etch mechanisms in NF3/hydrocarbon plasma. J. Phys. D Appl. Phys. 2006, 39, 673–684. [Google Scholar] [CrossRef]
- Pankratiev, P.; Barsukov, Y.; Vinogradov, A.; Volynets, V.; Kobelev, A.; Smirnov, A.S. Selective SiN/SiO etching by SF6/H2/Ar/He plasma. AIP Conf. Proc. 2019, 2179, 020017. [Google Scholar]
- Hsiao, S.N.; Ishikawa, K.; Hayashi, T.; Ni, J.; Tsutsumi, T.; Sekine, M.; Hori, M. Selective etching of SiN against SiO2 and poly-Si films in hydrofluoroethane chemistry with a mixture of CH2FCHF2, O2, and Ar. App. Surf. Sci. 2021, 541, 148439. [Google Scholar] [CrossRef]
- Zhu, X.M.; Pu, Y.K. Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas. Plasma Sources Sci. Technol 2008, 17, 024002. [Google Scholar] [CrossRef]
- Zhu, X.M.; Pu, Y.K. Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: Determination of the electron temperature and density by the line-ratio method. J. Phys. D Appl. Phys. 2010, 43, 403001. [Google Scholar] [CrossRef]
- Zhu, X.M.; Chen, W.C.; Li, J.; Pu, Y.K. Determining the electron temperature and the electron density by a simple collisional–radiative model of argon and xenon in low-pressure discharges. J. Phys. D Appl. Phys. 2009, 42, 025203. [Google Scholar] [CrossRef]
- Park, H.M.; Garvin, C.; Grimard, D.S.; Grizzle, J.W. Control of ion energy in a capacitively coupled reactive ion etcher. J. Electrochem. Soc. 1998, 145, 4247–4252. [Google Scholar] [CrossRef]
- Coburn, J.W. Role of ions in reactive ion etching. J. Vac. Sci. Technol. A 1994, 12, 1417–1424. [Google Scholar] [CrossRef]
- Catherine, Y. Plasma Processing, 1st ed.; Electrochemical Society: Pennington, NJ, US, 1985; p. 317. [Google Scholar]
- Kawata, H.; Murata, K.; Nagami, K. The dependence of silicon etching on an applied DC potential in CF4 + O2 plasmas. J. Electrochem. Soc. 1985, 132, 206–211. [Google Scholar] [CrossRef]
- Nagy, A.G. High-speed reactive ion etching of silicon by the application of a confined DC bias. Solid State Technol. 1983, 26, 173–178. [Google Scholar]
- Brčka, J.; Harman, R.; Blackburn, A. The selectivity of poly Si and SiO2 etching using a negative dc biasing of powered electrode. Vacuum 1986, 36, 531–533. [Google Scholar] [CrossRef]
- Bruce, R.H.; Reinberg, A.R. Profile control with D-C bias in plasma etching. J. Electrochem. Soc. 1982, 129, 393–396. [Google Scholar] [CrossRef]
- Giapis, K.P.; Sadeghi, N.; Margot, J.; Gottscho, R.A.; Lee, T.C.J. Limits to ion energy control in high density glow discharges: Measurement of absolute metastable ion concentrations. J. Appl. Phys. 1993, 73, 7188–7194. [Google Scholar] [CrossRef]
- Lazar, M.; Vang, H.; Brosselard, P.; Raynaud, C.; Cremillieu, P.; Leclercq, J.-L.; Descamps, A.; Scharnholz, S.; Planson, D. Deep SiC etching with RIE. Superlattices Microstruct. 2006, 40, 388–392. [Google Scholar] [CrossRef]
- Gritsenko, V.A.; Kwok, R.W.M.; Wong, H.; Xu, J.B. Short-range order in non-stoichiometric amorphous silicon oxynitride and silicon-rich nitride. J. Non-Cryst. Solids 2002, 297, 96–101. [Google Scholar] [CrossRef]
- Wong, C.K.; Wong, H.; Filip, V.; Chung, P.S. Bonding structure of silicon oxynitride grown by plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 2007, 46, 3202–3205. [Google Scholar] [CrossRef]
- Kastenmeier, B.E.E.; Matsuo, P.J.; Beulens, J.J.; Oehrlein, G.S. Chemical dry etching of silicon nitride and silicon dioxide using CF4/O2/N2 gas mixtures. J. Vac. Sci. Technol. A 1996, 14, 2802–2813. [Google Scholar] [CrossRef]
- Blain, M.G.; Meisenheimer, T.L.; Stevens, J.E. Role of nitrogen in the downstream etching of silicon nitride. J. Vac. Sci. Technol. A 1996, 14, 2151–2157. [Google Scholar] [CrossRef]
- Kastenmeier, B.E.E.; Matsuo, P.J.; Oehrlein, G.S. Highly selective etching of silicon nitride over silicon and silicon dioxide. J. Vac. Sci. Technol. A 1999, 17, 3179–3184. [Google Scholar] [CrossRef]
- Kastenmeier, B.E.E.; Matsuo, P.J.; Oehrlein, G.S.; Ellefson, R.E.; Frees, L.C. Surface etching mechanism of silicon nitride in fluorine and nitric oxide containing plasmas. J. Vac. Sci. Technol. A 2001, 19, 25–30. [Google Scholar] [CrossRef]
- Reese, R.M.; Dibeler, V.H. Ionization and dissociation of nitrogen trifluoride by electron impact. J. Chem. Phys. 1956, 24, 1175–1177. [Google Scholar] [CrossRef]
- Thynne, J.C.J. Negative ion formation by electron impact in nitrogen trifluoride. J. Phys. Chem. 1969, 63, 1586–1588. [Google Scholar] [CrossRef]
- Lowe, H.D.; Haruhiro, H.; Goto, H.H.; Ohmi, T. Control of ion energy and flux in a dual radio frequency excitation magnetron sputtering discharge. J. Vac. Sci. Technol. A 1991, 9, 3090–3099. [Google Scholar] [CrossRef]
- Lee, J.W.; Donohue, J.F.; Mackenzie, K.D.; Westerman, R.; Johnson, D.; Pearton, S.J. Mechanism of high density plasma processes for ion-driven etching of materials. Solid-State Electron. 1999, 43, 1769–1775. [Google Scholar] [CrossRef]
- Mayer, T.M.; Barker, R.A.; Whitman, L.J. Investigation of plasma etching mechanisms using beams of reactive gas ions. J. Vac. Sci. Technol. 1981, 18, 349–352. [Google Scholar] [CrossRef]
- Matsui, S.; Yamato, T.; Aritome, H.; Namba, S. Fabrication of SiO2 blazed holographic gratings by reactive ion-etching. Jpn. J. Appl. Phys. 1980, 19, 126–128. [Google Scholar] [CrossRef]
- Okano, H.; Horiike, Y. Plasma Processing; Frieser, R.G., Mogab, C.J., Eds.; Softbound Proceedings Series; Electrochemical Society: Pennington, NJ, USA, 1981; p. 199. [Google Scholar]
- Nordheden, K.J.; Verdeyen, J.T. The effect of oxygen on the etch rate of NF3 discharges. J. Electrochem. Soc. 1986, 133, 2168–2171. [Google Scholar] [CrossRef]
- Konuma, M.; Bauser, E. Mass and energy analysis of gaseous species in NF3 plasma during silicon reactive ion etching. J. Appl. Phys. 1993, 74, 62–67. [Google Scholar] [CrossRef]
- Kastenmeier, B.E.E.; Matsuo, P.J.; Oehrlein, G.S.; Langan, J.G. Remote plasma etching of silicon nitride and silicon dioxide using NF3/O2 gas mixtures. J. Vac. Sci. Technol. A 1998, 16, 2047–2056. [Google Scholar] [CrossRef]
- Mogab, C.J.; Adams, A.C.; Flamm, D.L. Plasma etching of Si and SiO2-the effect of oxygen additions to CF4 plasmas. J. Appl. Phys. 1978, 49, 3796–3803. [Google Scholar] [CrossRef]
Gas Mixture | Reactor | Si3N4 Selectivity | Ref. |
---|---|---|---|
CHF3 | Radio-frequency inductively coupled plasma | 1 | [6] |
C2F6 | 0.8 | ||
C3F6 | 0.5 | ||
C3F6, H2 | 0.2 | ||
CHF3 | Radio-frequency inductively coupled plasma | 1.3 | [20] |
C4F8 | 0.4 | ||
NF3, C2H4 | Magnetically confined inductively coupled plasma | 0.75 | [21] |
C5F8, O2 | Capacitively coupled plasma | 10 | [22] |
SF6, H2 | Magnetic neutral loop discharge plasma | 2.4 | [23] |
CH2FCH2F, O2, Ar | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tung, N.H.; Lee, H.; Dinh, D.K.; Kim, D.-W.; Lee, J.Y.; Eom, G.W.; Kim, H.-U.; Kang, W.S. Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction. Sensors 2024, 24, 3089. https://doi.org/10.3390/s24103089
Tung NH, Lee H, Dinh DK, Kim D-W, Lee JY, Eom GW, Kim H-U, Kang WS. Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction. Sensors. 2024; 24(10):3089. https://doi.org/10.3390/s24103089
Chicago/Turabian StyleTung, Nguyen Hoang, Heesoo Lee, Duy Khoe Dinh, Dae-Woong Kim, Jin Young Lee, Geon Woong Eom, Hyeong-U Kim, and Woo Seok Kang. 2024. "Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction" Sensors 24, no. 10: 3089. https://doi.org/10.3390/s24103089
APA StyleTung, N. H., Lee, H., Dinh, D. K., Kim, D.-W., Lee, J. Y., Eom, G. W., Kim, H.-U., & Kang, W. S. (2024). Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction. Sensors, 24(10), 3089. https://doi.org/10.3390/s24103089