Using Wearable Digital Devices to Screen Children for Mental Health Conditions: Ethical Promises and Challenges
Abstract
:1. Introduction
2. Accuracy and Bias
3. Privacy
4. Accessibility and Implementation
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whitney, D.G.; Peterson, M.D. US National and State-Level Prevalence of Mental Health Disorders and Disparities of Mental Health Care Use in Children. JAMA Pediatr. 2019, 173, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Racine, N.; McArthur, B.A.; Cooke, J.E.; Eirich, R.; Zhu, J.; Madigan, S. Global Prevalence of Depressive and Anxiety Symptoms in Children and Adolescents During COVID-19: A Meta-Analysis. JAMA Pediatr. 2021, 175, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Glynn, L.M.; Davis, E.P.; Luby, J.L.; Baram, T.Z.; Sandman, C.A. A Predictable Home Environment May Protect Child Mental Health during the COVID-19 Pandemic. Neurobiol Stress 2021, 14, 100291. [Google Scholar] [CrossRef] [PubMed]
- Heaton, K.G.; Camacho, N.L.; Gaffrey, M.S. Associations between Pre-Pandemic Authoritative Parenting, Pandemic Stressors, and Children’s Depression and Anxiety at the Initial Stage of the COVID-19 Pandemic. Sci. Rep. 2023, 13, 15592. [Google Scholar] [CrossRef] [PubMed]
- Murata, S.; Rezeppa, T.; Thoma, B.; Marengo, L.; Krancevich, K.; Chiyka, E.; Hayes, B.; Goodfriend, E.; Deal, M.; Zhong, Y.; et al. The Psychiatric Sequelae of the COVID-19 Pandemic in Adolescents, Adults, and Health Care Workers. Depress Anxiety 2021, 38, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, M.; Wallace, I.F.; Cook Middleton, J.; Kennedy, S.M.; McKeeman, J.; Hudson, K.; Rains, C.; Vander Schaaf, E.B.; Kahwati, L. Screening for Anxiety in Children and Adolescents: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2022, 328, 1445. [Google Scholar] [CrossRef] [PubMed]
- Foy, J.M. American Academy of Pediatrics Task Force on Mental Health Enhancing Pediatric Mental Health Care: Report from the American Academy of Pediatrics Task Force on Mental Health. Introduction. Pediatrics 2010, 125 (Suppl. S3), S69–S74. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, C.; Wegner, L.; Blum, N.J.; Macias, M.M.; Bauer, N.S.; Bridgemohan, C.; Goldson, E.; McGuinn, L.J.; Siegel, B.S.; Yogman, M.W.; et al. Promoting Optimal Development: Screening for Behavioral and Emotional Problems. Pediatrics 2015, 135, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.E.K.; Horwitz, S.M.; Storfer-Isser, A.; Heneghan, A.; Olson, L.; Hoagwood, K.E. Do Pediatricians Think They Are Responsible for Identification and Management of Child Mental Health Problems? Results of the AAP Periodic Survey. Ambul Pediatr 2008, 8, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Gardner, W.; Kelleher, K.J.; Pajer, K.A.; Campo, J.V. Primary Care Clinicians’ Use of Standardized Tools to Assess Child Psychosocial Problems. Ambul Pediatr 2003, 3, 191–195. [Google Scholar] [CrossRef]
- Renouf, A.G.; Kovacs, M. Concordance between Mothers’ Reports and Children’s Self-Reports of Depressive Symptoms: A Longitudinal Study. J. Am. Acad. Child Adolesc. Psychiatry 1994, 33, 208–216. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, E.W.; Copeland, W.; Shanahan, L.; Egger, H.L. Parental Perception of Mental Health Needs in Young Children. Child. Adolesc. Ment. Health 2021, 27, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Cormier, E.; Park, H.; Schluck, G. eMental Health Literacy and Knowledge of Common Child Mental Health Disorders among Parents of Preschoolers. Issues Ment. Health Nurs. 2020, 41, 540–551. [Google Scholar] [CrossRef]
- Conteh, N.; Gagliardi, J.; McGahee, S.; Molina, R.; Clark, C.T.; Clare, C.A. Medical Mistrust in Perinatal Mental Health. Harv. Rev. Psychiatry 2022, 30, 238. [Google Scholar] [CrossRef] [PubMed]
- Briggs-gowan, M.J.; Horwitz, S.M.; Schwab-stone, M.E.; Leventhal, J.M.; Leaf, P.J. Mental Health in Pediatric Settings: Distribution of Disorders and Factors Related to Service Use. J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-C.; Ouyang, C.-S.; Chiang, C.-T.; Wu, R.-C.; Yang, R.-C. Quantitative Analysis of Movements in Children with Attention-Deficit Hyperactivity Disorder Using a Smart Watch at School. Appl. Sci. 2020, 10, 4116. [Google Scholar] [CrossRef]
- Muñoz-Organero, M.; Powell, L.; Heller, B.; Harpin, V.; Parker, J. Using Recurrent Neural Networks to Compare Movement Patterns in ADHD and Normally Developing Children Based on Acceleration Signals from the Wrist and Ankle. Sensors 2019, 19, 2935. [Google Scholar] [CrossRef] [PubMed]
- Faedda, G.L.; Ohashi, K.; Hernandez, M.; McGreenery, C.E.; Grant, M.C.; Baroni, A.; Polcari, A.; Teicher, M.H. Actigraph Measures Discriminate Pediatric Bipolar Disorder from Attention-Deficit/Hyperactivity Disorder and Typically Developing Controls. J. Child Psychol. Psychiatry 2016, 57, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, N.C.; Summers, B.; Wilhelm, S. Digital Biomarkers of Social Anxiety Severity: Digital Phenotyping Using Passive Smartphone Sensors. J. Med. Internet Res. 2020, 22, e16875. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, E.; McGinnis, R.; Muzik, M.; Hruschak, J.; Lopez-Duran, N.; Perkins, N.; Fitzgerald, K.; Rosenblum, K. Movements Indicate Threat Response Phases in Children At-Risk for Anxiety. IEEE J. Biomed. Health Inform. 2016, 21, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Loftness, B.C.; Halvorson-Phelan, J.; O’Leary, A.; Bradshaw, C.; Prytherch, S.; Torous, J.; Copeland, W.L.; Cheney, N.; McGinnis, R.; McGinnis, E. The ChAMP App: A Scalable mHealth Technology for Detecting Digital Phenotypes of Early Childhood Mental Health. IEEE J. Biomed. Heal. Inform. 2023, 28, 2304–2313. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, E.W.; McGinnis, R.S.; Hruschak, J.; Bilek, E.; Ip, K.; Morlen, D.; Lawler, J.; Lopez-Duran, N.L.; Fitzgerald, K.; Rosenblum, K.L.; et al. Wearable Sensors Detect Childhood Internalizing Disorders during Mood Induction Task. PLoS ONE 2018, 13, e0195598. [Google Scholar] [CrossRef] [PubMed]
- Mcginnis, E.W.; Scism, J.; Hruschak, J.; Muzik, M.; Rosenblum, K.L.; Fitzgerald, K.; Copeland, W.; Mcginnis, R. Digital Phenotype for Childhood Internalizing Disorders: Less Positive Play and Promise for a Brief Assessment Battery. IEEE J. Biomed. Health Inform. 2021, 25, 3176–3184. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, E.W.; Anderau, S.P.; Hruschak, J.; Gurchiek, R.D.; Lopez-Duran, N.L.; Fitzgerald, K.; Rosenblum, K.L.; Muzik, M.; McGinnis, R. Giving Voice to Vulnerable Children: Machine Learning Analysis of Speech Detects Anxiety and Depression in Early Childhood. IEEE J. Biomed. Health Inform. 2019, 23, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Ametti, M.R.; Crehan, E.T.; O’Loughlin, K.; Schreck, M.C.; Dube, S.L.; Potter, A.S.; Sigmon, S.C.; Althoff, R.R. Frustration, Cognition, and Psychophysiology in Dysregulated Children: A Research Domain Criteria Approach. J. Am. Acad. Child Adolesc. Psychiatry 2022, 61, 796–808.e2. [Google Scholar] [CrossRef] [PubMed]
- Perna, G.; Riva, A.; Defillo, A.; Sangiorgio, E.; Nobile, M.; Caldirola, D. Heart Rate Variability: Can It Serve as a Marker of Mental Health Resilience? Special Section on “Translational and Neuroscience Studies in Affective Disorders” Section Editor, Maria Nobile MD, PhD. J. Affect. Disord. 2020, 263, 754–761. [Google Scholar] [CrossRef]
- Speer, K.E.; Semple, S.; Naumovski, N.; McKune, A.J. Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Fanti, K.A.; Mavrommatis, I.; Georgiou, G.; Kyranides, M.N.; Andershed, H.; Colins, O.F. Extending the Construct of Psychopathy to Childhood: Testing Associations with Heart Rate, Skin Conductance, and Startle Reactivity. J. Psychopathol. Behav. Assess. 2022, 44, 26–38. [Google Scholar] [CrossRef]
- Choo, M.; Park, D.; Cho, M.; Bae, S.; Kim, J.; Han, D.H. Exploring a Multimodal Approach for Utilizing Digital Biomarkers for Childhood Mental Health Screening. Front. Psychiatry 2024, 15, 1348319. [Google Scholar] [CrossRef] [PubMed]
- Welch, V.; Wy, T.J.; Ligezka, A.; Hassett, L.C.; Croarkin, P.E.; Athreya, A.P.; Romanowicz, M. Use of Mobile and Wearable Artificial Intelligence in Child and Adolescent Psychiatry: Scoping Review. J. Med. Internet Res. 2022, 24, e33560. [Google Scholar] [CrossRef]
- Digital Health Funding Globally 2010–2022. Available online: https://www.statista.com/statistics/388858/investor-funding-in-digital-health-industry/ (accessed on 10 May 2024).
- Bufano, P.; Laurino, M.; Said, S.; Tognetti, A.; Menicucci, D. Digital Phenotyping for Monitoring Mental Disorders: Systematic Review. J. Med. Internet Res. 2023, 25, e46778. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.H.; Jeong, H.; An, J.H.; Chung, T.-M. Mood Disorder Severity and Subtype Classification Using Multimodal Deep Neural Network Models. Sensors 2024, 24, 715. [Google Scholar] [CrossRef] [PubMed]
- Saylam, B.; İncel, Ö.D. Quantifying Digital Biomarkers for Well-Being: Stress, Anxiety, Positive and Negative Affect via Wearable Devices and Their Time-Based Predictions. Sensors 2023, 23, 8987. [Google Scholar] [CrossRef] [PubMed]
- Alhejaili, R.; Alomainy, A. The Use of Wearable Technology in Providing Assistive Solutions for Mental Well-Being. Sensors 2023, 23, 7378. [Google Scholar] [CrossRef] [PubMed]
- Gomes, N.; Pato, M.; Lourenço, A.R.; Datia, N. A Survey on Wearable Sensors for Mental Health Monitoring. Sensors 2023, 23, 1330. [Google Scholar] [CrossRef]
- McGinnis, R.S.; McGinnis, E.W. Advancing Digital Medicine with Wearables in the Wild. Sensors 2022, 22, 4576. [Google Scholar] [CrossRef] [PubMed]
- Mundt, J.C.; Vogel, A.P.; Feltner, D.E.; Lenderking, W.R. Vocal Acoustic Biomarkers of Depression Severity and Treatment Response. Biol. Psychiatry 2012, 72, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Applications of Speech Analysis in Psychiatry: Harvard Review of Psychiatry. Available online: https://journals.lww.com/hrpjournal/fulltext/2023/01000/applications_of_speech_analysis_in_psychiatry.1.aspx (accessed on 10 May 2024).
- Tlachac, M.L.; Flores, R.; Toto, E.; Rundensteiner, E. Early Mental Health Uncovering with Short Scripted and Unscripted Voice Recordings. In Deep Learning Applications, Volume 4; Wani, M.A., Palade, V., Eds.; Springer Nature: Singapore, 2023; pp. 79–110. ISBN 978-981-19615-3-3. [Google Scholar]
- Almaghrabi, S.A.; Clark, S.R.; Baumert, M. Bio-Acoustic Features of Depression: A Review. Biomed. Signal Process. Control 2023, 85, 105020. [Google Scholar] [CrossRef]
- Richer, R.; Koch, V.; Abel, L.; Hauck, F.; Kurz, M.; Ringgold, V.; Müller, V.; Küderle, A.; Schindler-Gmelch, L.; Eskofier, B.M.; et al. Machine Learning-Based Detection of Acute Psychosocial Stress from Body Posture and Movements. Sci. Rep. 2024, 14, 8251. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Seyedi, S.; Griner, E.; Abbasi, A.; Rad, A.B.; Kwon, H.; Cotes, R.O.; Clifford, G.D. Multimodal Mental Health Digital Biomarker Analysis from Remote Interviews Using Facial, Vocal, Linguistic, and Cardiovascular Patterns. IEEE J. Biomed. Health Inform. 2024, 28, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, R.S.; McGinnis, E.W.; Hruschak, J.; Lopez-Duran, N.L.; Fitzgerald, K.; Rosenblum, K.L.; Muzik, M. Rapid Detection of Internalizing Diagnosis in Young Children Enabled by Wearable Sensors and Machine Learning. PLoS ONE 2019, 14, e0210267. [Google Scholar] [CrossRef] [PubMed]
- Dawson, G. Could an Eye-Tracking Test Aid Clinicians in Making an Autism Diagnosis? New Findings and a Look to the Future. JAMA 2023, 330, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, L.; Perrotta, S.; LaGrassa, J.; Merikangas, K.; Kreindler, D.; Kundur, D.; Courtney, D.; Szatmari, P.; Battaglia, M.; Strauss, J. Mobile and Wearable Technology for Monitoring Depressive Symptoms in Children and Adolescents: A Scoping Review. J. Affect. Disord. 2020, 265, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Commissioner, O. of the FDA Authorizes Marketing of Diagnostic Aid for Autism Spectrum Disorder. Available online: https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-diagnostic-aid-autism-spectrum-disorder (accessed on 23 April 2024).
- Kiddo Health. Available online: https://kiddo.health (accessed on 10 May 2024).
- Kuhlthau, K.; Jellinek, M.; White, G.; VanCleave, J.; Simons, J.; Murphy, M. Increases in Behavioral Health Screening in Pediatric Care for Massachusetts Medicaid Patients. Arch. Pediatr. Adolesc. Med. 2011, 165, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Berger-Jenkins, E.; Monk, C.; D’Onfro, K.; Sultana, M.; Brandt, L.; Ankam, J.; Vazquez, N.; Lane, M.; Meyer, D. Screening for Both Child Behavior and Social Determinants of Health in Pediatric Primary Care. J. Dev. Behav. Pediatr. 2019, 40, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.P.; McCauley, E.; Grossman, D.C.; McCarty, C.A.; Richards, J.; Russo, J.E.; Rockhill, C.; Katon, W. Evaluation of the Patient Health Questionnaire (PHQ-9) for Detecting Major Depression among Adolescents. Pediatrics 2010, 126, 1117–1123. [Google Scholar] [CrossRef]
- Liu, J.; DiStefano, C.; Burgess, Y.; Wang, J. Pediatric Symptom Checklist-17. Eur. J. Psychol. Assess. 2020, 36, 77–83. [Google Scholar] [CrossRef]
- Achenbach, T.M.; Rescorla, L.A. ASEBA School Age Forms and Profiles; ASEBA: Burlington, VT, USA, 2001. [Google Scholar]
- Aebi, M.; Kuhn, C.; Banaschewski, T.; Grimmer, Y.; Poustka, L.; Steinhausen, H.-C.; Goodman, R. The Contribution of Parent and Youth Information to Identify Mental Health Disorders or Problems in Adolescents. Child Adolesc. Psychiatry Ment. Health 2017, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Kaminer, Y.; Feinstein, C.; Seifer, R. Is There a Need for Observationally Based Assessment of Affective Symptomatology in Child and Adolescent Psychiatry? Adolescence 1995, 30, 483–489. [Google Scholar] [PubMed]
- Garber, J.; Kaminski, K.M. Laboratory and Performance-Based Measures of Depression in Children and Adolescents. J. Clin. Child Psychol. 2000, 29, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Orchard, F.; Pass, L.; Cocks, L.; Chessell, C.; Reynolds, S. Examining Parent and Child Agreement in the Diagnosis of Adolescent Depression. Child. Adolesc. Ment. Health 2019, 24, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Sourander, A.; Helstelä, L.; Helenius, H. Parent-Adolescent Agreement on Emotional and Behavioral Problems. Soc. Psychiatry Psychiatr. Epidemiol. 1999, 34, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.D.; Lindsey, M.; Joe, S. Parent–Adolescent Concordance on Perceived Need for Mental Health Services and Its Impact on Service Use. Child. Youth Serv. Rev. 2011, 33, 2253–2260. [Google Scholar] [CrossRef] [PubMed]
- Salbach-Andrae, H.; Klinkowski, N.; Lenz, K.; Lehmkuhl, U. Agreement between Youth-Reported and Parent-Reported Psychopathology in a Referred Sample. Eur. Child. Adolesc. Psychiatry 2009, 18, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, F.C.; Der ende, J.V. Factors Associated with Child Mental Health Service Use in the Community. J. Am. Acad. Child Adolesc. Psychiatry 1997, 36, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Edelbrock, C.; Costello, A.J.; Dulcan, M.K.; Conover, N.C.; Kala, R. Parent-Child Agreement on Child Psychiatric Symptoms Assessed Via Structured Interview*. J. Child Psychol. Psychiatry 1986, 27, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Behrens, B.; Swetlitz, C.; Pine, D.S.; Pagliaccio, D. The Screen for Child Anxiety Related Emotional Disorders (SCARED): Informant Discrepancy, Measurement Invariance, and Test–Retest Reliability. Child Psychiatry Hum. Dev. 2019, 50, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Brookman-Frazee, L.; Haine, R.A.; Gabayan, E.N.; Garland, A.F. Predicting Frequency of Treatment Visits in Community-Based Youth Psychotherapy. Psychol Serv. 2008, 5, 126–138. [Google Scholar] [CrossRef]
- Ferdinand, R.F.; van der Ende, J.; Verhulst, F.C. Prognostic Value of Parent-Adolescent Disagreement in a Referred Sample. Eur. Child Adolesc. Psychiatry 2006, 15, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, H.C. Evaluating Medical Tests: Objective and Quantitative Guidelines. J. Am. Stat. Assoc. 1992, 87, 1243. [Google Scholar]
- Costello, E.J.; Copeland, W.; Angold, A. Trends in Psychopathology across the Adolescent Years: What Changes When Children Become Adolescents, and When Adolescents Become Adults? J. Child Psychol. Psychiatry 2011, 52, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Woodward, L.J.; Fergusson, D.M. Life Course Outcomes of Young People with Anxiety Disorders in Adolescence. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.L.; Vroman, L.N.; Durbin, C.E. Ecological Validity of Laboratory Assessments of Child Temperament: Evidence from Parent Perspectives. Psychol. Assess. 2015, 27, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Leikauf, J.E.; Correa, C.; Bueno, A.N.; Sempere, V.P.; Williams, L.M. StopWatch: Pilot Study for an Apple Watch Application for Youth with ADHD. Digit Health 2021, 7, 20552076211001215. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, C.-S.; Yang, R.-C.; Chiang, C.-T.; Wu, R.-C.; Lin, L.-C. Objective Evaluation of Therapeutic Effects of ADHD Medication Using a Smart Watch: A Pilot Study. Appl. Sci. 2020, 10, 5946. [Google Scholar] [CrossRef]
- Timmons, A.C.; Duong, J.B.; Simo Fiallo, N.; Lee, T.; Vo, H.P.Q.; Ahle, M.W.; Comer, J.S.; Brewer, L.C.; Frazier, S.L.; Chaspari, T. A Call to Action on Assessing and Mitigating Bias in Artificial Intelligence Applications for Mental Health. Perspect. Psychol. Sci 2023, 18, 1062–1096. [Google Scholar] [CrossRef] [PubMed]
- Redd, C.B.; Silvera-Tawil, D.; Hopp, D.; Zandberg, D.; Martiniuk, A.; Dietrich, C.; Karunanithi, M.K. Physiological Signal Monitoring for Identification of Emotional Dysregulation in Children. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4273–4277. [Google Scholar] [CrossRef]
- Nisenson, M.; Lin, V.; Gansner, M. Digital Phenotyping in Child and Adolescent Psychiatry: A Perspective. Harv. Rev. Psychiatry 2021, 29, 401. [Google Scholar] [CrossRef] [PubMed]
- Confidential Health Care for Minors | AMA-Code. Available online: https://code-medical-ethics.ama-assn.org/ethics-opinions/confidential-health-care-minors (accessed on 30 November 2023).
- Livingstone, S.; Stoilova, M.; Nandagiri, R. Children’s Data and Privacy Online: Growing up in a Digital Age: An Evidence Review. Available online: http://www.lse.ac.uk/my-privacy-uk (accessed on 8 January 2024).
- Martinez-Martin, N.; Insel, T.R.; Dagum, P.; Greely, H.T.; Cho, M.K. Data Mining for Health: Staking out the Ethical Territory of Digital Phenotyping. npj Digit. Med. 2018, 1, 68. [Google Scholar] [CrossRef] [PubMed]
- How Oura Protects Your Data. Available online: https://support.ouraring.com/hc/en-us/articles/360025586673-How-Oura-Protects-Your-Data (accessed on 30 November 2023).
- Kröger, J. Unexpected Inferences from Sensor Data: A Hidden Privacy Threat in the Internet of Things. In Proceedings of the Internet of Things. Information Processing in an Increasingly Connected World, Poznan, Poland, 18–19 September 2018; Strous, L., Cerf, V.G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 147–159. [Google Scholar]
- Wearing Down HIPAA: How Wearable Technologies Erode Privacy Protections John T. Katuska—Google Search. Available online: https://www.google.com/search?q=Wearing+Down+HIPAA%3A+How+Wearable+Technologies+Erode+Privacy+Protections+John+T.+Katuska&oq=Wearing+Down+HIPAA%3A+How+Wearable+Technologies+Erode+Privacy+Protections+John+T.+Katuska&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQIRiPAjIHCAIQIRiPAtIBBzI3MWowajeoAgCwAgA&sourceid=chrome&ie=UTF-8 (accessed on 30 November 2023).
- Oncology Center of Excellence; Center for Biologics Evaluation and Research; Center for Devices and Radiological Health; Center for Drug Evaluation and Research. Digital Health Technologies for Remote Data Acquisition in Clinical Investigations. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/digital-health-technologies-remote-data-acquisition-clinical-investigations (accessed on 30 November 2023).
- Center for Devices and Radiological Health. Deciding When to Submit a 510(k) for a Software Change to an Existing Device. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/deciding-when-submit-510k-software-change-existing-device (accessed on 30 November 2023).
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Tully, L.A.; Hunt, C. Brief Parenting Interventions for Children at Risk of Externalizing Behavior Problems: A Systematic Review. J. Child. Fam. Stud. 2016, 25, 705–719. [Google Scholar] [CrossRef]
- Costantini, I.; López-López, J.A.; Caldwell, D.; Campbell, A.; Hadjipanayi, V.; Cantrell, S.J.; Thomas, T.; Badmann, N.; Paul, E.; James, D.M.; et al. Early Parenting Interventions to Prevent Internalising Problems in Children and Adolescents: A Global Systematic Review and Network Meta-Analysis. BMJ Ment. Health 2023, 26, e300811. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, P.; Maunders, K. The Effectiveness of Creative Bibliotherapy for Internalizing, Externalizing, and Prosocial Behaviors in Children: A Systematic Review. Child. Youth Serv. Rev. 2015, 55, 37–47. [Google Scholar] [CrossRef]
- Rapee, R.M.; Abbott, M.J.; Lyneham, H.J. Bibliotherapy for Children with Anxiety Disorders Using Written Materials for Parents: A Randomized Controlled Trial. J. Consult. Clin. Psychol. 2006, 74, 436–444. [Google Scholar] [CrossRef] [PubMed]
- March, S.; Spence, S.H.; Donovan, C.L. The Efficacy of an Internet-Based Cognitive-Behavioral Therapy Intervention for Child Anxiety Disorders. J. Pediatr. Psychol. 2009, 34, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.E.; Levitt, P.; Nelson, C.A. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture. Child. Dev. 2010, 81, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Poston, J.M.; Hanson, W.E. Meta-Analysis of Psychological Assessment as a Therapeutic Intervention. Psychol. Assess. 2010, 22, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Home. Available online: https://vitalconnect.com/ (accessed on 30 November 2023).
- Wies, B.; Landers, C.; Ienca, M. Digital Mental Health for Young People: A Scoping Review of Ethical Promises and Challenges. Front. Digit. Health 2021, 3, 697072. [Google Scholar] [CrossRef] [PubMed]
- Petta, L.M. Resonance Frequency Breathing Biofeedback to Reduce Symptoms of Subthreshold PTSD with an Air Force Special Tactics Operator: A Case Study. Appl. Psychophysiol. Biofeedback 2017, 42, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, K.; Tyroll, H.; Pavarini, G.; Manzini, A.; Singh, I. Can Your Phone Be Your Therapist? Young People’s Ethical Perspectives on the Use of Fully Automated Conversational Agents (Chatbots) in Mental Health Support. Biomed. Inf. Insights 2019, 11, 1178222619829083. [Google Scholar] [CrossRef] [PubMed]
- Comas-Díaz, L. Latino Healing: The Integration of Ethnic Psychology into Psychotherapy. Psychother. Theory Res. Pract. Train. 2006, 43, 436–453. [Google Scholar] [CrossRef] [PubMed]
- Myers, L.J.; Young, A.; Obasi, E.; Speight, S.L. Recommendations for the Treatment of African Descent Populations. Psychol. Treat. Ethn. Minor. Popul. 2003, 13–18. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Leary, A.; Lahey, T.; Lovato, J.; Loftness, B.; Douglas, A.; Skelton, J.; Cohen, J.G.; Copeland, W.E.; McGinnis, R.S.; McGinnis, E.W. Using Wearable Digital Devices to Screen Children for Mental Health Conditions: Ethical Promises and Challenges. Sensors 2024, 24, 3214. https://doi.org/10.3390/s24103214
O’Leary A, Lahey T, Lovato J, Loftness B, Douglas A, Skelton J, Cohen JG, Copeland WE, McGinnis RS, McGinnis EW. Using Wearable Digital Devices to Screen Children for Mental Health Conditions: Ethical Promises and Challenges. Sensors. 2024; 24(10):3214. https://doi.org/10.3390/s24103214
Chicago/Turabian StyleO’Leary, Aisling, Timothy Lahey, Juniper Lovato, Bryn Loftness, Antranig Douglas, Joseph Skelton, Jenna G. Cohen, William E. Copeland, Ryan S. McGinnis, and Ellen W. McGinnis. 2024. "Using Wearable Digital Devices to Screen Children for Mental Health Conditions: Ethical Promises and Challenges" Sensors 24, no. 10: 3214. https://doi.org/10.3390/s24103214
APA StyleO’Leary, A., Lahey, T., Lovato, J., Loftness, B., Douglas, A., Skelton, J., Cohen, J. G., Copeland, W. E., McGinnis, R. S., & McGinnis, E. W. (2024). Using Wearable Digital Devices to Screen Children for Mental Health Conditions: Ethical Promises and Challenges. Sensors, 24(10), 3214. https://doi.org/10.3390/s24103214