Validation of Inertial-Measurement-Unit-Based Ex Vivo Knee Kinematics during a Loaded Squat before and after Reference-Frame-Orientation Optimisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Calculation of Tibio-Femoral Kinematics
2.3. REFRAME
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Favre, J.; Jolles, B.M. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions. EFORT Open Rev. 2016, 1, 368–374. [Google Scholar] [CrossRef]
- Feng, J.; Wick, J.; Bompiani, E.; Aiona, M. Applications of gait analysis in pediatric orthopaedics. Curr. Orthop. Pract. 2016, 27, 455–464. [Google Scholar] [CrossRef]
- Postolka, B.; Taylor, W.R.; List, R.; Fucentese, S.F.; Koch, P.P.; Schutz, P. ISB clinical biomechanics award winner 2021: Tibio-femoral kinematics of natural versus replaced knees—A comparison using dynamic videofluoroscopy. Clin. Biomech. 2022, 96, 105667. [Google Scholar] [CrossRef]
- Tanifuji, O.; Sato, T.; Mochizuki, T.; Koga, Y.; Yamagiwa, H.; Endo, N.; Kobayashi, K.; Omori, G. Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy. J. Orthop. Sci. 2011, 16, 710–718. [Google Scholar] [CrossRef]
- Cross, J.A.; McHenry, B.D.; Molthen, R.; Exten, E.; Schmidt, T.G.; Harris, G.F. Biplane fluoroscopy for hindfoot motion analysis during gait: A model-based evaluation. Med. Eng. Phys. 2017, 43, 118–123. [Google Scholar] [CrossRef]
- List, R.; Postolka, B.; Schutz, P.; Hitz, M.; Schwilch, P.; Gerber, H.; Ferguson, S.J.; Taylor, W.R. A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent. PLoS ONE 2017, 12, e0185952. [Google Scholar] [CrossRef]
- Guan, S.; Gray, H.A.; Keynejad, F.; Pandy, M.G. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait. IEEE Trans. Med. Imaging 2016, 35, 326–336. [Google Scholar] [CrossRef]
- Akhtaruzzaman, M.; Shafie, A.A.; Khan, M.R. Gait analysis: Systems, technologies, and importance. J. Mech. Med. Biol. 2016, 16, 1630003. [Google Scholar] [CrossRef]
- Klöpfer-Krämer, I.; Brand, A.; Wackerle, H.; Müßig, J.; Kröger, I.; Augat, P. Gait analysis—Available platforms for outcome assessment. Injury 2020, 51, S90–S96. [Google Scholar] [CrossRef]
- Yunus, M.N.H.; Jaafar, M.H.; Mohamed, A.S.A.; Azraai, N.Z.; Hossain, M.S. Implementation of Kinetic and Kinematic Variables in Ergonomic Risk Assessment Using Motion Capture Simulation: A Review. Int. J. Environ. Res. Public Health 2021, 18, 8342. [Google Scholar] [CrossRef]
- Weygers, I.; Kok, M.; Konings, M.; Hallez, H.; De Vroey, H.; Claeys, K. Inertial Sensor-Based Lower Limb Joint Kinematics: A Methodological Systematic Review. Sensors 2020, 20, 673. [Google Scholar] [CrossRef]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef]
- Versteyhe, M.; De Vroey, H.; Debrouwere, F.; Hallez, H.; Claeys, K. A Novel Method to Estimate the Full Knee Joint Kinematics Using Low Cost IMU Sensors for Easy to Implement Low Cost Diagnostics. Sensors 2020, 20, 1683. [Google Scholar] [CrossRef]
- Ortigas Vásquez, A.; Maas, A.; List, R.; Schutz, P.; Taylor, W.R.; Grupp, T.M. A Framework for Analytical Validation of Inertial-Sensor-Based Knee Kinematics Using a Six-Degrees-of-Freedom Joint Simulator. Sensors 2022, 23, 348. [Google Scholar] [CrossRef]
- Schütz, P.; Postolka, B.; Gerber, H.; Ferguson, S.J.; Taylor, W.R.; List, R. Knee implant kinematics are task-dependent. J. R. Soc. Interface 2019, 16, 20180678. [Google Scholar] [CrossRef]
- Rauch, H.E.; Tung, F.; Striebel, C.T. Maximum likelihood estimates of linear dynamic systems. AIAA J. 1965, 3, 1445–1450. [Google Scholar] [CrossRef]
- Ortigas Vásquez, A.; Taylor, W.R.; Maas, A.; Woiczinski, M.; Grupp, T.M.; Sauer, A. A frame orientation optimisation method for consistent interpretation of kinematic signals. Sci. Rep. 2023, 13, 9632. [Google Scholar] [CrossRef]
- Ortigas Vásquez, A.; Taylor, W.R.; Postolka, B.; Schütz, P.; Maas, A.; Woiczinski, M.; Sauer, A. A Reproducible and Robust Representation of Tibiofemoral Kinematics of the Healthy Knee Joint during Stair Descent using REFRAME—Part I: REFRAME Foundations and Validation. TBD, 2024; in review. [Google Scholar]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Fottner, A.; Müller, P.; Jansson, V. Patellofemoral contact patterns before and after total knee arthroplasty: An in vitro measurement. Biomed. Eng. Online 2013, 12, 58. [Google Scholar] [CrossRef]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Fottner, A.; Müller, P.E.; Jansson, V. The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: An in vitro study. Arch. Orthop. Trauma. Surg. 2014, 134, 867–872. [Google Scholar] [CrossRef]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Fottner, A.; Pinskerova, V.; Müller, P.E.; Jansson, V. Femorotibial kinematics and load patterns after total knee arthroplasty: An in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin. Biomech. 2016, 33, 42–48. [Google Scholar] [CrossRef]
- Steinbrück, A.; Schröder, C.; Woiczinski, M.; Glogaza, A.; Müller, P.E.; Jansson, V.; Fottner, A. A lateral retinacular release during total knee arthroplasty changes femorotibial kinematics: An in vitro study. Arch. Orthop. Trauma. Surg. 2018, 138, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Bauer, L.; Woiczinski, M.; Thorwächter, C.; Melsheimer, O.; Weber, P.; Grupp, T.M.; Jansson, V.; Steinbrück, A. Secondary Patellar Resurfacing in TKA: A Combined Analysis of Registry Data and Biomechanical Testing. J. Clin. Med. 2021, 10, 1227. [Google Scholar] [CrossRef] [PubMed]
- Müller, O.; Lo, J.; Wünschel, M.; Obloh, C.; Wülker, N. Simulation of force loaded knee movement in a newly developed in vitro knee simulator. Biomed. Tech. 2009, 54, 142–149. [Google Scholar] [CrossRef]
- Seel, T.; Schauer, T.; Raisch, J. In Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints. In Proceedings of the 2012 IEEE International Conference on Control Applications, Dubrovnik, Croatia, 3–5 October 2012; pp. 45–49. [Google Scholar]
- Kuhn, M.; Johnson, K. A Review of the Predictive Modeling Process. In Feature Engineering and Selection: A Practical Approach for Predictive Models; Kimmel, J., Ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 36–39. [Google Scholar]
- Eckhoff, D.G.; Bach, J.M.; Spitzer, V.M.; Reinig, K.D.; Bagur, M.M.; Baldini, T.H.; Flannery, N.M. Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J. Bone Jt. Surg. Am. 2005, 87 (Suppl. 2), 71–80. [Google Scholar]
- Eckhoff, D.; Hogan, C.; DiMatteo, L.; Robinson, M.; Bach, J. Difference between the epicondylar and cylindrical axis of the knee. Clin. Orthop. Relat. Res. 2007, 461, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Churchill, D.L.; Incavo, S.J.; Johnson, C.C.; Beynnon, B.D. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin. Orthop. Relat. Res. 1998, 356, 111–118. [Google Scholar] [CrossRef] [PubMed]
Specimen ID | Age (Years) | Sex | Left/Right |
---|---|---|---|
1 | 73 | Male | Right |
2 | 88 | Male | Right |
3 | 83 | Female | Left |
4 | 80 | Male | Left |
5 | 78 | Female | Left |
6 | 77 | Male | Left |
7 | 84 | Female | Left |
Mean | 80.4 | ||
SD | 4.6 |
Flexion/Extension | Ab/Adduction | Ext/Internal Rotation | |
---|---|---|---|
Raw | 3.8 ± 3.5 | 20.4 ± 10.0 | 8.6 ± 5.7 |
REFRAMEIMU→GOM | 3.0 ± 2.0 | 0.9 ± 0.4 | 1.4 ± 0.7 |
REFRAMERMS | 4.2 ± 3.6 | 0.9 ± 0.4 | 1.5 ± 0.7 |
Specimen 1 | Specimen 2 | Specimen 3 | Specimen 4 | Specimen 5 | Specimen 6 | Specimen 7 | ||
---|---|---|---|---|---|---|---|---|
Femur | ||||||||
Rot [°] | x | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
y | 12.5 | −2.7 | −6.2 | 30.1 | 14.0 | 23.4 | 23.2 | |
z | 5.2 | 1.3 | 6.0 | −1.1 | −2.1 | 0.6 | 4.1 | |
Tibia | ||||||||
Rot [°] | x | −8.6 | 2.1 | 0.9 | 4.4 | −0.8 | 4.0 | 3.2 |
y | 10.9 | 5.3 | 14.2 | 34.5 | 14.4 | 29.7 | 26.1 | |
z | 9.6 | −3.8 | −3.2 | 7.4 | −1.1 | 8.4 | 13.2 |
Specimen 1 | Specimen 2 | Specimen 3 | Specimen 4 | Specimen 5 | Specimen 6 | Specimen 7 | ||
---|---|---|---|---|---|---|---|---|
Femur | ||||||||
Rot [°] | x | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
y | 16.8 | 0.9 | 3.0 | 26.8 | 12.4 | 22.7 | 22.7 | |
z | −0.6 | 0.2 | 0.1 | 0.9 | 1.0 | 1.1 | 1.5 | |
Tibia | ||||||||
Rot [°] | x | 1.0 | 0.0 | 0.0 | 5.5 | 1.0 | 3.6 | 3.1 |
y | 15.0 | 0.9 | 2.7 | 25.0 | 10.9 | 20.4 | 20.0 | |
z | 7.4 | 0.6 | 1.7 | 8.9 | 5.2 | 8.7 | 10.0 |
Specimen 1 | Specimen 2 | Specimen 3 | Specimen 4 | Specimen 5 | Specimen 6 | Specimen 7 | ||
---|---|---|---|---|---|---|---|---|
Femur | ||||||||
Rot [°] | x | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
y | 3.8 | 3.6 | 9.1 | −3.2 | −1.7 | −0.7 | −0.8 | |
z | −4.8 | −0.8 | −5.1 | 1.1 | 2.9 | −0.3 | −3.0 | |
Tibia | ||||||||
Rot [°] | x | −0.2 | 0.1 | −1.1 | 0.7 | 0.4 | 0.2 | −0.2 |
y | 1.5 | −4.7 | −11.9 | −8.8 | −3.5 | −8.4 | −5.7 | |
z | −0.2 | 4.3 | 4.4 | 1.9 | 6.6 | 0.2 | −3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagasser, S.; Sauer, A.; Thorwächter, C.; Weber, J.G.; Maas, A.; Woiczinski, M.; Grupp, T.M.; Ortigas-Vásquez, A. Validation of Inertial-Measurement-Unit-Based Ex Vivo Knee Kinematics during a Loaded Squat before and after Reference-Frame-Orientation Optimisation. Sensors 2024, 24, 3324. https://doi.org/10.3390/s24113324
Sagasser S, Sauer A, Thorwächter C, Weber JG, Maas A, Woiczinski M, Grupp TM, Ortigas-Vásquez A. Validation of Inertial-Measurement-Unit-Based Ex Vivo Knee Kinematics during a Loaded Squat before and after Reference-Frame-Orientation Optimisation. Sensors. 2024; 24(11):3324. https://doi.org/10.3390/s24113324
Chicago/Turabian StyleSagasser, Svenja, Adrian Sauer, Christoph Thorwächter, Jana G. Weber, Allan Maas, Matthias Woiczinski, Thomas M. Grupp, and Ariana Ortigas-Vásquez. 2024. "Validation of Inertial-Measurement-Unit-Based Ex Vivo Knee Kinematics during a Loaded Squat before and after Reference-Frame-Orientation Optimisation" Sensors 24, no. 11: 3324. https://doi.org/10.3390/s24113324
APA StyleSagasser, S., Sauer, A., Thorwächter, C., Weber, J. G., Maas, A., Woiczinski, M., Grupp, T. M., & Ortigas-Vásquez, A. (2024). Validation of Inertial-Measurement-Unit-Based Ex Vivo Knee Kinematics during a Loaded Squat before and after Reference-Frame-Orientation Optimisation. Sensors, 24(11), 3324. https://doi.org/10.3390/s24113324