Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis
Abstract
:1. Introduction
2. Existing Works on Portable Systems for Bladder Monitoring
3. Materials and Methods
3.1. Wearable Devices: NEwear and Commercial Sensor Bands
3.2. Gateway: NEtcher
Data Collection Supervisor
3.3. Server: NExplorer
3.3.1. Feature Extraction
3.3.2. Feature Generation for Bladder Volume Change Estimation
3.3.3. NE-Appropriate Data Analysis
3.3.4. NE Moment Estimation
4. Experiments
4.1. In-Hospital Data Collection in Urodynamic Study
4.2. In-home Data Collection of NE Patients
5. Results
5.1. Correlations between BV Changes and the Proposed BI Features
5.2. Investigation of BV, HR, and PLMS Regarding NE
5.2.1. BV Increase
5.2.2. HR Increase
5.2.3. PLMS Appearance
5.3. NE Moment Estimation Results
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pretlow, R.A. Treatment of nocturnal enuresis with an ultrasound bladder volume controlled alarm device. J. Urol. 1999, 162, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines; World Health Organization: Geneva, Switzerland, 1992.
- Kennea, N.L.; Evans, J.H. Drug treatment of nocturnal enuresis. Paediatr. Perinat. Drug Ther. 2000, 4, 12–18. [Google Scholar] [CrossRef]
- Claudius, G.; Chhatwal, J.; Sohi, I. Efficacy of alarm intervention in primary monosymptomatic nocturnal enuresis in children. Int. J. Contemp. Pediatr. 2016, 3, 621–624. [Google Scholar] [CrossRef]
- Mindray Medical International Ltd. TE7. Available online: https://www.mindray.com/na/products/ultrasound/point-of-care/teseries/te-7-max-portable-ultrasound-machine/ (accessed on 23 March 2024).
- Kulkarni, M.B.; Rajagopal, S.; Prieto-Simón, B.; Pogue, B.W. Recent advances in smart wearable sensors for continuous human health monitoring. Talanta 2024, 272, 125817. [Google Scholar] [CrossRef] [PubMed]
- Kwinten, W.; van Leuteren, P.; van Duren-van Iersel, M.; Dik, P.; Jira, P. SENS-U: Continuous home monitoring of natural nocturnal bladder filling in children with nocturnal enuresis—A feasibility study. J. Pediatr. Urol. 2020, 16, 196.e1–196.e6. [Google Scholar] [CrossRef] [PubMed]
- Fournelle, M.; Grün, T.; Speicher, D.; Weber, S.; Yilmaz, M.; Schoeb, D.; Miernik, A.; Reis, G.; Tretbar, S.; Hewener, H. Portable ultrasound research system for use in automated bladder monitoring with machine-learning-based segmentation. Sensors 2021, 21, 6481. [Google Scholar] [CrossRef] [PubMed]
- Kuru, K.; Ansell, D.; Hughes, D.; Watkinson, B.J.; Gaudenzi, F.; Jones, M.; Lunardi, D.; Caswell, N.; Montiel, A.R.; Leather, P.; et al. Treatment of nocturnal enuresis using miniaturised smart mechatronics with artificial intelligence. IEEE J. Transl. Eng. Health Med. 2023, 12, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Kuru, K.; Watkinson, B.J.; Ansell, D.; Hughes, D.; Jones, M.; Caswell, N.; Leather, P.; Bennett, K.; Sugden, P.; Davies, C.; et al. Smart Wearable Device for Nocturnal Enuresis. In Proceedings of the 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, St. Julians, Malta, 7–9 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 95–96. [Google Scholar]
- Cho, H.; Song, I.; Jang, J.; Yoo, Y. A lightweight deep learning network on a system-on-chip for wearable ultrasound bladder volume measurement systems: Preliminary study. Bioengineering 2023, 10, 525. [Google Scholar] [CrossRef]
- Lee, K.; Lee, M.H.; Kang, D.; Kim, S.; Chang, J.H.; Oh, S.J.; Hwang, J.Y. Intelligent Bladder Volume Monitoring for Wearable Ultrasound Devices: Enhancing Accuracy through Deep Learning-based Coarse-to-Fine Shape Estimation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024. [Google Scholar] [CrossRef] [PubMed]
- Stothers, L.; Macnab, A.J. Home-based monitoring of lower urinary tract health: Simultaneous measures using wearable near infrared spectroscopy and linked wireless scale. In Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables III; SPIE: Bellingham, DC, USA, 2022; Volume 11956, pp. 55–60. [Google Scholar]
- Fechner, P.; König, F.; Kratsch, W.; Lockl, J.; Röglinger, M. Near-infrared spectroscopy for bladder monitoring: A machine learning approach. ACM Trans. Manag. Inf. Syst. 2023, 14, 1–23. [Google Scholar] [CrossRef]
- Kang, B.I.; Kim, A.; Kim, S. Advancing patient care: Innovative use of near-infrared spectroscopy for monitoring urine volume in neurogenic bladder. Int. Neurourol. J. 2023, 27, S27. [Google Scholar] [CrossRef]
- Gaubert, V.; Gidik, H.; Koncar, V. Smart underwear, incorporating textrodes, to estimate the bladder volume: Proof of concept on a test bench. Smart Mater. Struct. 2020, 29, 085028. [Google Scholar] [CrossRef]
- Baran, B.; Wójcik, D.; Oleszek, M.; Vejar, A.; Rymarczyk, T. BETS: A Bladder Monitoring System Using Electrical Impedance Tomography: Poster. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA, 6–9 November 2022; pp. 804–805. [Google Scholar]
- Zhang, R.; Fang, R.; Zhang, Z.; Hosseini, E.; Orooji, M.; Homayoun, H.; Goncu-Berk, G. Short: Real-Time Bladder Monitoring by Bio-impedance Analysis to Aid Urinary Incontinence. In Proceedings of the 8th ACM/IEEE International Conference on Connected Health: Applications, Systems and Engineering Technologies, Orlando, FL, USA, 21–23 June 2023; pp. 138–142. [Google Scholar]
- Dheman, K.; Glahn, M.; Magno, M. Towards Enhanced Bladder Volume Measurement with Context-Aware Bio-Impedance Sensor Fusion. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar]
- CDC National Center for Health Statistics Growth Charts. Available online: https://www.cdc.gov/growthcharts/ (accessed on 23 March 2024).
- Bader, G.; Nevéus, T.; Kruse, S.; Sillén, U. Sleep of primary enuretic children and controls. Sleep 2002, 25, 579–583. [Google Scholar] [CrossRef]
- Dhondt, K.; Baert, E.; Van Herzeele, C.; Raes, A.; Groen, L.A.; Hoebeke, P.; Vande Walle, J. Sleep fragmentation and increased periodic limb movements are more common in children with nocturnal enuresis. Acta Paediatr. 2014, 103, e268–e272. [Google Scholar] [CrossRef]
- Moon, J.; Lee, K.; Lee, Y.S. Integrated system of monitoring and intervention for in-home healthcare and treatment. In Proceedings of the Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 393–398. [Google Scholar]
- Shin, S.c.; Moon, J.; Kye, S.; Lee, K.; Lee, Y.S.; Kang, H.G. Continuous bladder volume monitoring system for wearable applications. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 4435–4438. [Google Scholar]
- Shin, S.c.; Lee, S.; Lee, T.; Lee, K.; Lee, Y.S.; Kang, H.G. Two electrode based healthcare device for continuously monitoring ECG and BIA signals. In Proceedings of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, USA, 4–7 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 141–144. [Google Scholar]
- Ko, R.E.; Kim, Z.; Jeon, B.; Ji, M.; Chung, C.R.; Suh, G.Y.; Chung, M.J.; Cho, B.H. Deep Learning-Based Early Warning Score for Predicting Clinical Deterioration in General Ward Cancer Patients. Cancers 2023, 15, 5145. [Google Scholar] [CrossRef]
- Cho, S.; Kim, Z.; Chung, D.; Cho, B.; Chung, M.; Kim, J.; Jeong, J. Development of machine learning models for the surveillance of colon surgical site infections. J. Hosp. Infect. 2024, 146, 224–231. [Google Scholar] [CrossRef]
- Park, S.; Moon, J.; Eun, H.; Hong, J.H.; Lee, K. Artificial Intelligence-Based Diagnostic Support System for Patent Ductus Arteriosus in Premature Infants. J. Clin. Med. 2024, 13, 2089. [Google Scholar] [CrossRef]
- Moon, J.; Oh, M.; Kim, S.; Lee, K.; Lee, J.; Song, Y.; Jeon, J.Y. Intelligent estimation of exercise induced energy expenditure including excess post-exercise oxygen consumption (EPOC) with different exercise intensity. Sensors 2023, 23, 9235. [Google Scholar] [CrossRef]
- Bordukova, M.; Makarov, N.; Rodriguez-Esteban, R.; Schmich, F.; Menden, M.P. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin. Drug Discov. 2024, 19, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Bai, X.; Liu, K.; Wei, J.; Suo, P.; Xu, L. Bladder Volume Estimation using 3D Electrical Impedance Tomography Based on Fringe Field Sensing. IEEE Trans. Instrum. Meas. 2023, 72, 4504210. [Google Scholar]
- Niestoruk, L.; Beuth, T.; Petry, K.; Balzer, M.; Stork, W.; Mueller-Glaser, K. A concept for wearable long-term urinary bladder monitoring with ultrasound. Feasibility study. In Proceedings of the 2012 5th European DSP Education and Research Conference (EDERC), Amsterdam, The Netherlands, 13–14 September 2012; pp. 134–138. [Google Scholar] [CrossRef]
- MBIENTLAB INC. METAMOTIONS (Old Version: MetaWearC). Available online: https://mbientlab.com/metamotions/ (accessed on 23 March 2024).
- MALEM MEDICAL Ltd. Malem™ Easy-Clip© Sensor. Available online: https://malemmedical.com/collections/bedwetting-sensors/products/malem-easy-clip-sensor (accessed on 23 March 2024).
- Esgalhado, F.; Batista, A.; Vassilenko, V.; Russo, S.; Ortigueira, M. Peak detection and HRV feature evaluation on ECG and PPG signals. Symmetry 2022, 14, 1139. [Google Scholar] [CrossRef]
- Ancona, S.; Faraci, F.D.; Khatab, E.; Fiorillo, L.; Gnarra, O.; Nef, T.; Bassetti, C.L.; Bargiotas, P. Wearables in the home-based assessment of abnormal movements in Parkinson’s disease: A systematic review of the literature. J. Neurol. 2022, 1–11. [Google Scholar] [CrossRef]
- Dhondt, K.; Raes, A.; Hoebeke, P.; Van Laecke, E.; Van Herzeele, C.; Walle, J.V. Abnormal sleep architecture and refractory nocturnal enuresis. J. Urol. 2009, 182, 1961–1966. [Google Scholar] [CrossRef]
- Liu, K.; Bai, X.; Wei, J.; Liang, X.; Sun, J.; Xu, L. Investigation of bladder volume measurement based on fringe effect of electrical impedance tomography sensors. IEEE Open J. Instrum. Meas. 2022, 1, 4000310. [Google Scholar] [CrossRef]
- Lee, S.; Moon, J.; Shin, S.C.; Hwang, J.H.; Lee, K.; Lee, Y.S. Continuous body impedance measurement to detect bladder volume changes during urodynamic study: A prospective study in pediatric patients. Neurourol. Urodyn. 2021, 40, 421–427. [Google Scholar] [CrossRef]
- Huang, B.; Jian, J.; Basit, A.; Gui, R.; Wang, W.Q. Adaptive distributed target detection for FDA-MIMO radar in Gaussian clutter without training data. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2961–2972. [Google Scholar] [CrossRef]
- Shin, J.; Moon, J.; Kim, B.; Eom, J.; Park, N.; Lee, K. Attention-based stress detection exploiting non-contact monitoring of movement patterns with IR-UWB radar. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual Event, 22–26 March 2021; pp. 637–640. [Google Scholar]
- Wang, C.; Wang, X.; Jing, X.; Yokoi, H.; Huang, W.; Zhu, M.; Chen, S.; Li, G. Towards high-accuracy classifying attention-deficit/hyperactivity disorders using CNN-LSTM model. J. Neural Eng. 2022, 19, 046015. [Google Scholar] [CrossRef]
- Akmal, M. Tensor factorization and attention-based CNN-LSTM deep-learning architecture for improved classification of missing physiological sensors data. IEEE Sens. J. 2022, 23, 1286–1294. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Park, S.A.; Lee, H.C.; Jung, C.W.; Yang, H.L. Attention mechanisms for physiological signal deep learning: Which attention should we take? In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 613–622. [Google Scholar]
- Nevéus, T.; von Gontard, A.; Hoebeke, P.; Hjälmås, K.; Bauer, S.; Bower, W.; Jørgensen, T.M.; Rittig, S.; Walle, J.V.; Yeung, C.K.; et al. The standardization of terminology of lower urinary tract function in children and adolescents: Report from the Standardisation Committee of the International Children’s Continence Society. J. Urol. 2006, 176, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Garmin Ltd. vívofit® jr. 3—Garmin. Available online: https://www.garmin.com/en-US/p/711538#overview (accessed on 23 March 2024).
- Khan, F.; Azou, S.; Youssef, R.; Morel, P.; Radoi, E. IR-UWB radar-based robust heart rate detection using a deep learning technique intended for vehicular applications. Electronics 2022, 11, 2505. [Google Scholar] [CrossRef]
- Jönsson, K.A.; Andersson, E.; Nevéus, T.; Gärdenfors, T.; Balkenius, C. Improving the efficacy of enuresis alarm treatment through early prediction of treatment outcome: A machine learning approach. Front. Urol. 2023, 3, 1296349. [Google Scholar] [CrossRef]
- Franco, I.; Coble, J. Initial outcomes using a novel bedwetting alarm (Gogoband®) that utilizes real time artificial intelligence to wake users prior to wetting. J. Pediatr. Urol. 2023, 19, 557.e1–557.e8. [Google Scholar] [CrossRef]
Portable Systems | Device type | Target | Sensor |
---|---|---|---|
SENS-U [7] | Pad | BV | US |
Gaubert et al. [16] | Smart underwear | BV | BI |
MoUsE [8] | Pad | BV | US |
Baran et al. [17] | Belt | BV | BI |
PortaMon (used in [13]) | Placed by fingers | Uroflow data (e.g., BV) | NIRS |
Fechner et al. [14] | Attachable | BV | NIRS, Acc |
MyPAD [9,10] | Pad | BV (Phantom) | US |
EdgeFlow UH10 (used in [15]) | Scanner | BV (Phantom) | US |
Optode sensor [15] | Portable | BV | NIRS |
Sun et al. [31] | Attachable | BV | BI |
Zhang et al. [18] | Belt | BV | BI |
Dheman et al. [19] | Patch | BV | BI, EMG, QVAR |
SonixTouch Q+ (used in [12]) | Stationary system | BV | US |
Preliminary of NEcare [23] | Belt | HR, BV | ECG, BI |
NEcare (this work) | Belt, ankle bands | HR, BV, PLMS | ECG, BI, Acc, Gyro |
Category | Features |
---|---|
BV (5) | BI, BID_decrease, BID, DBID, Clt |
HR(V) (9) | HR (max, mean, min, std), nni 20, nni 50, pnni 20, pnni 50, range nn |
LMs (7) | Trend of angle differences (Left, Right), movement magnitude (Left, Right), motion counter (Left, Right), PLMS index |
Estimators | REB | REBL | REBH | REALL | DE |
---|---|---|---|---|---|
BV | O | O | O | O | O |
HR | X | X | O | O | O |
LM | X | O | X | O | O |
Subjects | The Entire Treatment | Data Collection | NE Days |
---|---|---|---|
P1 | 39 days | 34 days | 10 days |
P2 | 46 days | 38 days | 13 days |
P3 | 84 days | 73 days | 41 days |
P4 | 47 days | 28 days | 14 days |
Subject | Dry Day | NE Day | Total Day |
---|---|---|---|
P1 | 13.06 | 19.88 | 17.87 |
P2 | 9.07 | 15.45 | 13.41 |
P3 | 10.23 | 6.03 | 8.45 |
P4 | 21.17 | 25.97 | 22.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Moon, J.; Lee, Y.S.; Shin, S.-c.; Lee, K. Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis. Sensors 2024, 24, 3330. https://doi.org/10.3390/s24113330
Lee S, Moon J, Lee YS, Shin S-c, Lee K. Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis. Sensors. 2024; 24(11):3330. https://doi.org/10.3390/s24113330
Chicago/Turabian StyleLee, Sangyeop, Junhyung Moon, Yong Seung Lee, Seung-chul Shin, and Kyoungwoo Lee. 2024. "Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis" Sensors 24, no. 11: 3330. https://doi.org/10.3390/s24113330
APA StyleLee, S., Moon, J., Lee, Y. S., Shin, S.-c., & Lee, K. (2024). Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis. Sensors, 24(11), 3330. https://doi.org/10.3390/s24113330