Using Physiological Markers to Assess Comfort during Neuromuscular Electrical Stimulation Induced Muscle Contraction in a Virtually Guided Environment: Pilot Study for a Path toward Combating ICU-Acquired Weakness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment
2.2. Virtual Data Collection Setup
2.3. Skin Preparation
2.4. Anthropometric Data
2.5. Motor Point Localization
2.6. Stimulation Electrodes
2.7. Heart Rate Data
2.8. Quality of Contraction and Self-Reported Pain
2.9. Baseline Trials
2.10. Stimulation Trials
2.11. Kit Disconnection and Cleaning
2.12. Heart Rate Data Processing
2.13. Statistical Analysis
3. Results
3.1. Participants
3.2. Quality of Contraction
3.3. NPRS
3.4. Heart Rate Variability
3.5. Correlation of HRV and NPRS
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lad, H.; Saumur, T.M.; Herridge, M.S.; Dos Santos, C.C.; Mathur, S.; Batt, J.; Gilbert, P. Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int. J. Mol. Sci. 2020, 21, 7840. [Google Scholar] [CrossRef]
- Appleton, R.T.; Kinsella, J.; Quasim, T. The incidence of intensive care unit-acquired weakness syndromes: A systematic review. J. Intensive Care Soc. 2015, 16, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Batt, J.; Herridge, M.S.; Dos Santos, C.C. From skeletal muscle weakness to functional outcomes following critical illness: A translational biology perspective. Thorax 2019, 74, 1091–1098. [Google Scholar] [CrossRef]
- Nakanishi, N.; Takashima, T.; Oto, J. Muscle atrophy in critically ill patients: A review of its cause, evaluation, and prevention. J. Med. Investig. 2020, 67, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jolley, S.E.; Bunnell, A.E.; Hough, C.L. ICU-Acquired Weakness. Chest 2016, 150, 1129–1140. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Roig, M.; Karatzanos, E.; Nanas, S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: A systematic review. BMC Med. 2013, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Latronico, N.; Herridge, M.; Hopkins, R.O.; Angus, D.; Hart, N.; Hermans, G.; Iwashyna, T.; Arabi, Y.; Citerio, G.; Wesley Ely, E.; et al. The ICM research agenda on intensive care unit-acquired weakness. Intensive Care Med. 2017, 43, 1270–1281. [Google Scholar] [CrossRef]
- Knutson, J.S.; Makowski, N.S.; Kilgore, K.L.; Chae, J. Neuromuscular electrical stimulation applications. In Atlas of Orthoses and Assistive Devices; Elsevier: Amsterdam, The Netherlands, 2019; pp. 432–439.e433. [Google Scholar] [CrossRef]
- Gobbo, M.; Maffiuletti, N.A.; Orizio, C.; Minetto, M.A. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J. Neuroeng. Rehabil. 2014, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Segers, J.; Hermans, G.; Bruyninckx, F.; Meyfroidt, G.; Langer, D.; Gosselink, R. Feasibility of neuromuscular electrical stimulation in critically ill patients. J. Crit. Care 2014, 29, 1082–1088. [Google Scholar] [CrossRef]
- Sesay, M.; Robin, G.; Tauzin-Fin, P.; Sacko, O.; Gimbert, E.; Vignes, J.-R.; Liguoro, D.; Nouette-Gaulain, K. Responses of heart rate variability to acute pain after minor spinal surgery: Optimal thresholds and correlation with the numeric rating scale. J. Neurosurg. Anesthesiol. 2015, 27, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.; Jarczok, M.N.; Ellis, R.J.; Hillecke, T.K.; Thayer, J.F. Heart rate variability and experimentally induced pain in healthy adults: A systematic review. Eur. J. Pain 2014, 18, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Haefeli, M.; Elfering, A. Pain assessment. Eur. Spine J. 2006, 15 (Suppl. S1), S17–S24. [Google Scholar] [CrossRef] [PubMed]
- Konrad, P. The ABC of EMG—A Practical Introduction to Kinesiological Electromyography; Noraxon Inc.: Scottsdale, AZ, USA, 2005. [Google Scholar]
- Zhou, P.; Rymer, W.Z. Factors governing the form of the relation between muscle force and the EMG: A simulation study. J. Neurophysiol. 2004, 92, 2878–2886. [Google Scholar] [CrossRef] [PubMed]
- Loucks, T.L.; Tyson, C.; Dorr, D.; Garovic, V.D.; Hill, J.; McSwain, S.D.; Radovick, S.; Sonnenberg, F.A.; Weis, J.A.; Brady, K.T. Clinical research during the COVID-19 pandemic: The role of virtual visits and digital approaches. J. Clin. Transl. Sci. 2021, 5, e102. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Karoly, P.; Braver, S. The measurement of clinical pain intensity: A comparison of six methods. Pain 1986, 27, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Minarini, G. Root Mean Square of the Successive Differences as Marker of the Parasympathetic System and Difference in the Outcome after ANS Stimulation. In Autonomic Nervous System Monitoring—Heart Rate Variability; Aslanidis, T., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Nakagawa, K.; Bergquist, A.J.; Yamashita, T.; Yoshida, T.; Masani, K. Motor point stimulation primarily activates motor nerve. Neurosci. Lett. 2020, 736, 135246. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-J.; Lee, K.-T.; Lin, J.-S.; Chuang, C.-C. Observing continuous change in heart rate variability and photoplethysmography-derived parameters during the process of pain production/relief with thermal stimuli. J. Pain Res. 2017, 10, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Hewson, D.J.; Hogrel, J.Y.; Langeron, Y.; Duchêne, J. Evolution in impedance at the electrode-skin interface of two types of surface EMG electrodes during long-term recordings. J. Electromyogr. Kinesiol. 2003, 13, 273–279. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean ± SD |
---|---|
Age (years) | 24.2 ± 1.7 |
Weight (kg) | 67.6 ± 14.4 |
Height (cm) | 168.8 ± 9.1 |
Shank circumference (cm) | 36.9 ± 3.5 |
Shank length (cm) | 38.1 ± 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Hamde, A.; Philippi, L.; Jones, E.; Martin, C.; Wu, K.; Kundell, M.; Mathur, S.; Sadeghian, A.; Davoudpour, M.; Batt, J.; et al. Using Physiological Markers to Assess Comfort during Neuromuscular Electrical Stimulation Induced Muscle Contraction in a Virtually Guided Environment: Pilot Study for a Path toward Combating ICU-Acquired Weakness. Sensors 2024, 24, 3599. https://doi.org/10.3390/s24113599
Abou-Hamde A, Philippi L, Jones E, Martin C, Wu K, Kundell M, Mathur S, Sadeghian A, Davoudpour M, Batt J, et al. Using Physiological Markers to Assess Comfort during Neuromuscular Electrical Stimulation Induced Muscle Contraction in a Virtually Guided Environment: Pilot Study for a Path toward Combating ICU-Acquired Weakness. Sensors. 2024; 24(11):3599. https://doi.org/10.3390/s24113599
Chicago/Turabian StyleAbou-Hamde, Ahmad, Lauren Philippi, Eric Jones, Christian Martin, Kingsley Wu, Michael Kundell, Sunita Mathur, Alireza Sadeghian, Maryam Davoudpour, Jane Batt, and et al. 2024. "Using Physiological Markers to Assess Comfort during Neuromuscular Electrical Stimulation Induced Muscle Contraction in a Virtually Guided Environment: Pilot Study for a Path toward Combating ICU-Acquired Weakness" Sensors 24, no. 11: 3599. https://doi.org/10.3390/s24113599