Comparison of Machine Learning Algorithms Fed with Mobility-Related and Baropodometric Measurements to Identify Temporomandibular Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol and Setup
2.2.1. Clinical Assessment
Mouth Opening (MO)
- Straight (S). No deviation is observed.
- Lateral deviation to the right (RDEV) or to the left (LDEV). For deviations that are observed in the maximum aperture on one side only, the operator determined which side of the face the deviation is directed to and noted it.
- Corrected deviation (CDEV). The patient has a slight deviation, to the right or to the left, which is corrected either at the midline or when the maximum unguided opening is reached.
- Other (O). Participant showed a discontinuous or different opening than those listed.
Opening Width (OW)
Joint Noises (JN)
Muscle Palpation (MP)
Joint Palpation (JP)
PHQ-9 and GAD-7
2.2.2. Instrumental Assessment
Baropodometric Analysis
Cervical ROM Analysis
2.3. Data Analysis and Feature Extraction
2.3.1. Clinical Assessment
PHQ-9 and GAD-7
2.3.2. Instrumental Assessment
Baropodometric Analysis
- The podalic angle (PA) is the angle formed by the intersection of the two lateral tangents of the footprint (Figure 7b).
- Forefoot and rearfoot load percentage (FL and RL, respectively) computed as the load distribution on the forefoot and rearfoot estimated from the subject weight.
- Total load percentage between left and right foot (TL), indicating the percentage of the total weight distributed between the right and left side.
Cervical ROM Analysis
- Flexion [θFLEX]: the value of the maximum angle reached in flexion.
- Extension [θEXT]: the value of the maximum angle reached in extension.
- Total flexion–extension [θFLEX+EXT]: the sum of the two angles of flexion and extension.
- Right rotation [θR_ROT]: the value of the maximum angle reached in rotation to the right.
- Left rotation [θL_ROT]: the value of the maximum angle reached in rotation to the left.
- Total rotation [θTOT_ROT]: the sum of the two right and left rotation angles.
- Right inclination [θR_INC]: the value of the maximum angle reached in the inclination to the right.
- Left inclination [θL_INC]: the value of the maximum angle reached when tilting to the left.
- Total inclination [θTOT_INC]: the sum of the two right and left inclination angles.
2.4. Machine-Learning Algorithms
Performance Metrics
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romero-Reyes, M.; Uyanik, J.M. Orofacial Pain Management: Current Perspectives. J. Pain Res. 2014, 7, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Ohrbach, R.; Dworkin, S.F. The Evolution of TMD Diagnosis. J. Dent. Res. 2016, 95, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S. Pain Genetics: Past, Present and Future. Trends Genet. 2012, 28, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, T.; Dvir, Z.; Reiter, S.; Winocur, E. Cervical Flexion-Rotation Test and Physiological Range of Motion—A Comparative Study of Patients with Myogenic Temporomandibular Disorder versus Healthy Subjects. Musculoskelet. Sci. Pract. 2017, 27, 7–13. [Google Scholar] [CrossRef] [PubMed]
- List, T.; Axelsson, S. Management of TMD: Evidence from Systematic Reviews and Meta-Analyses. J. Oral Rehabil. 2010, 37, 430–451. [Google Scholar] [CrossRef] [PubMed]
- Suenaga, S.; Nagayama, K.; Nagasawa, T.; Indo, H.; Majima, H.J. The Usefulness of Diagnostic Imaging for the Assessment of Pain Symptoms in Temporomandibular Disorders. Jpn. Dent. Sci. Rev. 2016, 52, 93–106. [Google Scholar] [CrossRef]
- Robinson de Senna, B.; Kelma dos Santos Silva, V.; Petruceli Franca, J.; Silva Marques, L.; Pereira, L.J. Imaging Diagnosis of the Temporomandibular Joint: Critical Review of Indications and New Perspectives. Oral Radiol. 2006, 25, 8698. [Google Scholar]
- Schiffman, E.; Ohrbach, R. Executive Summary of the Diagnostic Criteria for Temporomandibular Disorders for Clinical and Research Applications. J. Am. Dent. Assoc. 2016, 147, 438–445. [Google Scholar] [CrossRef]
- Steenks, M.; Türp, J.; de Wijer, A. Reliability and Validity of the Diagnostic Criteria for Temporomandibular Disorders Axis I in Clinical and Research Settings: A Critical Appraisal. J. Oral Facial Pain Headache 2018, 32, 7–18. [Google Scholar] [CrossRef]
- Steenks, M.H.; Turp, J.C.; Habil, M.D.; Anton de Wijer, R.P.T.; Steenks, M.H. Reliability and Validity of the DC/TMD Axis I. J. Oral Facial Pain Headache 2018, 32, 27–28. [Google Scholar] [CrossRef]
- Walczyńska-Dragon, K.; Baron, S.; Nitecka-Buchta, A.; Tkacz, E. Correlation between TMD and Cervical Spine Pain and Mobility: Is the Whole Body Balance TMJ Related? BioMed Res. Int. 2014, 2014, 582414. [Google Scholar] [CrossRef] [PubMed]
- Grondin, F.; Hall, T.; Laurentjoye, M.; Ella, B. Upper Cervical Range of Motion Is Impaired in Patients with Temporomandibular Disorders. Cranio® 2015, 33, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Nota, A.; Tecco, S.; Ehsani, S.; Padulo, J.; Baldini, A. Postural Stability in Subjects with Temporomandibular Disorders and Healthy Controls: A Comparative Assessment. J. Electromyogr. Kinesiol. 2017, 37, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.A.; Pasinato, F.; Corrêa, E.C.R.; da Silva, A.M.T. Global Body Posture and Plantar Pressure Distribution in Individuals with and without Temporomandibular Disorder: A Preliminary Study. J. Manip. Physiol. Ther. 2014, 37, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Scharnweber, B.; Adjami, F.; Schuster, G.; Kopp, S.; Natrup, J.; Erbe, C.; Ohlendorf, D. Influence of Dental Occlusion on Postural Control and Plantar Pressure Distribution. Cranio® 2017, 35, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Martínez, F.; Herranz-Gómez, A.; Madroñero-Miguel, B.; Reina-Varona, Á.; La Touche, R.; Angulo-Díaz-Parreño, S.; Pardo-Montero, J.; del Corral, T.; López-de-Uralde-Villanueva, I. Craniocervical and Cervical Spine Features of Patients with Temporomandibular Disorders: A Systematic Review and Meta-Analysis of Observational Studies. J. Clin. Med. 2020, 9, 2806. [Google Scholar] [CrossRef]
- Rocha, C.P.; Croci, C.S.; Caria, P.H.F. Is There Relationship between Temporomandibular Disorders and Head and Cervical Posture? A Systematic Review. J. Oral Rehabil. 2013, 40, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Sambataro, S.; Cervino, G.; Bocchieri, S.; La Bruna, R.; Cicciù, M. TMJ Dysfunctions Systemic Implications and Postural Assessments: A Review of Recent Literature. J. Funct. Morphol. Kinesiol. 2019, 4, 58. [Google Scholar] [CrossRef]
- Claudino, J.G.; Capanema, D.d.O.; de Souza, T.V.; Serrão, J.C.; Machado Pereira, A.C.; Nassis, G.P. Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: A Systematic Review. Sports Med. Open 2019, 5, 28. [Google Scholar] [CrossRef]
- Chidambaram, S.; Maheswaran, Y.; Patel, K.; Sounderajah, V.; Hashimoto, D.A.; Seastedt, K.P.; McGregor, A.H.; Markar, S.R.; Darzi, A. Using Artificial Intelligence-Enhanced Sensing and Wearable Technology in Sports Medicine and Performance Optimisation. Sensors 2022, 22, 6920. [Google Scholar] [CrossRef]
- Taborri, J.; Molinaro, L.; Santospagnuolo, A.; Vetrano, M.; Vulpiani, M.C.; Rossi, S. A Machine-Learning Approach to Measure the Anterior Cruciate Ligament Injury Risk in Female Basketball Players. Sensors 2021, 21, 3141. [Google Scholar] [CrossRef] [PubMed]
- Reda, B.; Contardo, L.; Prenassi, M.; Guerra, E.; Derchi, G.; Marceglia, S. Artificial intelligence to support early diagnosis of temporomandibular disorders: A preliminary case study. J. Oral Rehabil. 2023, 50, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-S.; Jha, N.; Kim, Y.-J. Risk Factor Assessments of Temporomandibular Disorders via Machine Learning. Sci. Rep. 2021, 11, 19802. [Google Scholar] [CrossRef] [PubMed]
- Małgorzata, P.; Małgorzata, K.-M.; Karolina, C.; Gala, A. Diagnostic of Temporomandibular Disorders and Other Facial Pain Conditions—Narrative Review and Personal Experience. Medicina 2020, 56, 472. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, S.F.; Sherman, J.; Mancl, L.; Ohrbach, R.; LeResche, L.; Truelove, E. Reliability, Validity, and Clinical Utility of the Research Diagnostic Criteria for Temporomandibular Disorders Axis II Scales: Depression, Non-Specific Physical Symptoms, and Graded Chronic Pain. J. Orofac. Pain 2002, 16, 207–220. [Google Scholar] [PubMed]
- Kroenke, K.; Wu, J.; Yu, Z.; Bair, M.J.; Kean, J.; Stump, T.; Monahan, P.O. Patient Health Questionnaire Anxiety and Depression Scale: Initial Validation in Three Clinical Trials. Psychosom. Med. 2016, 78, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Hawrylak, A.; Brzeźna, A.; Chromik, K. Distribution of Plantar Pressure in Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 4173. [Google Scholar] [CrossRef] [PubMed]
- Matla, J.; Filar-Mierzwa, K.; Ścisłowska-Czarnecka, A.; Jankowicz-Szymańska, A.; Bac, A. The Influence of the Physiotherapeutic Program on Selected Static and Dynamic Foot Indicators and the Balance of Elderly Women Depending on the Ground Stability. Int. J. Environ. Res. Public Health 2021, 18, 4660. [Google Scholar] [CrossRef]
- Molinaro, L.; Taborri, J.; Pauletto, D.; Guerra, V.; Molinaro, D.; Sicari, G.; Regina, A.; Guerra, E.; Rossi, S. Measuring the Immediate Effects of High-Intensity Functional Training on Motor, Cognitive and Physiological Parameters in Well-Trained Adults. Sensors 2023, 23, 3937. [Google Scholar] [CrossRef]
- Molinaro, L.; Taborri, J.; Rossi, S. Baropodometric Analysis in Different Feet Positions: Reliability and Repeatability Evaluation. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 7–9 June 2021; pp. 295–300. [Google Scholar]
- Russo, L.; Panessa, T.; Bartolucci, P.; Raggi, A.; Migliaccio, G.M.; Larion, A.; Padulo, J. Elastic Taping Application on the Neck: Immediate and Short-Term Impacts on Pain and Mobility of Cervical Spine. J. Funct. Morphol. Kinesiol. 2023, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Ohrbach, R.; Gonzalez, Y.; List, T.; Michelotti, A.; Shiffman, E. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) Clinical Examination Protoco. 2014. Available online: www.rdc-tmdinternational.org (accessed on 2 February 2024).
- Mahony, R.; Hamel, T.; Pflimin, J.-M. Non-Linear Complementary Filters on the Special Orthogonal Group. IEEE Trans. Autom. Control Inst. Electr. Electron. Eng. 2008, 53, 1203–1217. [Google Scholar] [CrossRef]
- Preece, S.J.; Paul, L.; Kenney, J.; Meijer, K.; Crompton, R.H.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D.; Crompton, R. Activity Identification Using Body-Mounted Sensors—A Review of Classification Techniques. Physiol. Meas. 2009, 30, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support Vector Machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef]
- Taborri, J.; Scalona, E.; Palermo, E.; Rossi, S.; Cappa, P. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy. Sensors 2015, 15, 24514. [Google Scholar] [CrossRef] [PubMed]
- Andrés Crespo Reinoso, P.; Ruiz Delgado, E.; Jerez Robalino, J. Biomechanics of the Temporomandibular Joint. In Temporomandibular Joint-Surgical Reconstruction and Managements; IntechOpen: London, UK, 2023. [Google Scholar]
- Martínez-Nova, A.; Sánchez-Rodríguez, R.; Cuevas-García, J.C.; Sánchez-Barrado, E. Estudio Baropodométrico de Los Valores de Presión Plantar En Pies No Patológicos. Rehabilitación 2007, 41, 155–160. [Google Scholar] [CrossRef]
- Iacob, S.M.; Chisnoiu, A.M.; Buduru, S.D.; Berar, A.; Fluerasu, M.I.; Iacob, I.; Objelean, A.; Studnicska, W.; Viman, L.M. Plantar Pressure Variations Induced by Experimental Malocclusion—A Pilot Case Series Study. Healthcare 2021, 9, 599. [Google Scholar] [CrossRef] [PubMed]
- Perinetti, G.; Türp, J.C.; Primožič, J.; Di Lenarda, R.; Contardo, L. Associations between the Masticatory System and Muscle Activity of Other Body Districts. A Meta-Analysis of Surface Electromyography Studies. J. Electromyogr. Kinesiol. 2011, 21, 877–884. [Google Scholar] [CrossRef]
- O’Leary, S.; Falla, D.; Elliott, J.M.; Jull, G. Muscle Dysfunction in Cervical Spine Pain: Implications for Assessment and Management. J. Orthop. Sports Phys. Ther. 2009, 39, 324–333. [Google Scholar] [CrossRef]
- Hartmann, F.; Cucchi, G. Les Dysfonctions Cranio-Mandibulaires, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 2. [Google Scholar]
- Haldeman, S.; Dagenais, S. Cervicogenic Headaches. Spine J. 2001, 1, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Amaral, F.A.; Dall’Agnol, S.M.; Socolovski, G.; Kich, C.; Franco, G.C.N.; Bortoluzzi, M.C. Cervical Spine Range of Motion, Posture and Electromyographic Activity of Masticatory Muscles in Temporomandibular Disorders. Fisioter. Mov. 2020, 33, e003325. [Google Scholar] [CrossRef]
- Tjärnberg, A.; Mahmood, O.; Jackson, C.; Saldi, G.-A.; Cho, K.; Christiaen, L.; Bonneau, R. Optimal Tuning of Weighted KNN- and Diffusion-Based Methods for Denoising Single Cell Genomics Data. PLoS Comput. Biol. 2021, 17, e1008569. [Google Scholar] [CrossRef]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), IEEE, Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar]
- Mannini, A.; Sabatini, A.M. Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers. Sensors 2010, 10, 1154–1175. [Google Scholar] [CrossRef]
- Palmer, J.; Durham, J. Temporomandibular Disorders. BJA Educ. 2021, 21, 44–50. [Google Scholar] [CrossRef]
Classification | No | Yes | |
---|---|---|---|
1 | Straight (S) | 0 | 1 |
2 | Lateral deviation to the right (RDEV) or to the left (LDEV) | 0 | 1 |
3 | Corrected deviation (CDEV) | 0 | 1 |
4 | Other (O) | 0 | 1 |
Classification | Value |
---|---|
No noise | 0 |
Click | 1 |
Crepitus | 2 |
Classification | Pain | |
---|---|---|
No | Yes | |
Temporal Muscle | 0 | 1 |
Masseter Muscle | 0 | 1 |
Temporomandibular Joint | 0 | 1 |
Over the Last 2 Weeks, on How Many Days Have You Been Bothered by Any of the Following Problems? | Not at All | Several Days | More Than Half the Days | Nearly Every Day | |
---|---|---|---|---|---|
1 | Little interest or pleasure in doing things | 0 | 1 | 2 | 3 |
2 | Feeling down, depressed or hopeless | 0 | 1 | 2 | 3 |
3 | Trouble falling or staying asleep, or sleeping too much | 0 | 1 | 2 | 3 |
4 | Feeling tired or having little energy | 0 | 1 | 2 | 3 |
5 | Poor appetite or overeating | 0 | 1 | 2 | 3 |
6 | Feeling bad about yourself–or that you are a failure or have let yourself or your family down | 0 | 1 | 2 | 3 |
7 | Trouble concentrating on things, such as reading the newspaper or watching television | 0 | 1 | 2 | 3 |
8 | Moving or speaking so slowly that other people could have noticed, or the opposite–being so fidgety or restless that you have been moving around a lot more than usual | 0 | 1 | 2 | 3 |
9 | Thoughts that you would be better off dead or of hurting yourself in some way | 0 | 1 | 2 | 3 |
Over the Last 2 Weeks, on How Many Days Have You Been Bothered by Any of the Following Problems? | Not at All | Several Days | More Than Half the Days | Nearly Every Day | |
---|---|---|---|---|---|
1 | Feeling nervous, anxious or on edge | 0 | 1 | 2 | 3 |
2 | Not being able to stop or control worrying | 0 | 1 | 2 | 3 |
3 | Worring too much about different things | 0 | 1 | 2 | 3 |
4 | Trouble relaxing | 0 | 1 | 2 | 3 |
5 | Being so restless it is hard to sit still | 0 | 1 | 2 | 3 |
6 | Becoming easily annoyed or irritable | 0 | 1 | 2 | 3 |
7 | Feeling afraid as if something awful might happen | 0 | 1 | 2 | 3 |
Parameters | Related Task | CG | TMD |
---|---|---|---|
% of participants manifesting deviation | MO | 4% | 100% |
Mean value (SD) (mm) | OW | 43.4 (2.8) | 35.4 (2.9) |
% of participants manifesting noise | JN | 8% | 100% |
% of participants manifesting muscle pain | MP | 40% | 100% |
% of participants manifesting joint pain | JP | 0% | 100% |
Median score | GAD-7 | 6 | 9 |
Median score | PHQ-9 | 3 | 8 |
Task | Features | CG | TMD | |
---|---|---|---|---|
Baropodometric analysis | Right foot | PA (°) | 7.5 (1.0) | 6.0 (0.8) |
FL (%) | 19.8 (1.2) | 28.5 (1.1) | ||
RL (%) | 31.0 (2.2) | 26.2 (1.0) | ||
TL (%) | 52.0 (1.2) | 54.4 (1.3) | ||
Left foot | PA (°) | 5.4 (0.8) | 4.4 (1.1) | |
FL (%) | 19.8 (0.7) | 24.6 (1.1) | ||
RL (%) | 29.4 (1.4) | 21.4 (1.2) | ||
TL (%) | 48.0 (1.1) | 45.6 (1.2) | ||
Cervical mobility | θFLEX (°) | 55.9 (4.2) | 53.8 (2.2) | |
θEXT (°) | 60.9 (2.9) | 52.2 (4.4) | ||
θFLEX+EXT (°) | 116.8 (4.4) | 106.0 (3.6) | ||
θR_ROT (°) | 72.5 (4.3) | 67.1 (2.6) | ||
θL_ROT (°) | 75.3 (3.9) | 70.7 (3.3) | ||
θTOT_ROT (°) | 147.7 (4.4) | 137.8 (2.2) | ||
θR_INC (°) | 43.4 (3.2) | 40.5 (3.3) | ||
θL_INC (°) | 40.1 (2.3) | 40.4 (4.9) | ||
θTOT_INC (°) | 83.5 (3.3) | 80.5 (3.3) |
Classifiers | B | M | MB | ||||||
---|---|---|---|---|---|---|---|---|---|
A | F1 | G | A | F1 | G | A | F1 | G | |
l-SVM | 0.65 | 0.76 | 0.29 | 0.75 | 0.77 | 0.27 | 0.84 | 0.80 | 0.23 |
q-SVM | 0.77 | 0.77 | 0.31 | 0.78 | 0.81 | 0.26 | 0.83 | 0.84 | 0.22 |
c-SVM | 0.69 | 0.71 | 0.30 | 0.79 | 0.82 | 0.26 | 0.80 | 0.84 | 0.23 |
f-kNN | 0.73 | 0.79 | 0.29 | 0.79 | 0.81 | 0.28 | 0.91 | 0.93 | 0.11 |
c-kNN | 0.74 | 0.72 | 0.33 | 0.82 | 0.83 | 0.22 | 0.94 | 0.94 | 0.08 |
w-kNN | 0.72 | 0.71 | 0.32 | 0.75 | 0.77 | 0.33 | 0.93 | 0.92 | 0.10 |
c-DT | 0.66 | 0.69 | 0.45 | 0.71 | 0.72 | 0.30 | 0.84 | 0.80 | 0.24 |
m-DT | 0.65 | 0.65 | 0.44 | 0.74 | 0.75 | 0.32 | 0.82 | 0.83 | 0.23 |
cx-DT | 0.70 | 0.77 | 0.34 | 0.79 | 0.80 | 0.26 | 0.86 | 0.82 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taborri, J.; Molinaro, L.; Russo, L.; Palmerini, V.; Larion, A.; Rossi, S. Comparison of Machine Learning Algorithms Fed with Mobility-Related and Baropodometric Measurements to Identify Temporomandibular Disorders. Sensors 2024, 24, 3646. https://doi.org/10.3390/s24113646
Taborri J, Molinaro L, Russo L, Palmerini V, Larion A, Rossi S. Comparison of Machine Learning Algorithms Fed with Mobility-Related and Baropodometric Measurements to Identify Temporomandibular Disorders. Sensors. 2024; 24(11):3646. https://doi.org/10.3390/s24113646
Chicago/Turabian StyleTaborri, Juri, Luca Molinaro, Luca Russo, Valerio Palmerini, Alin Larion, and Stefano Rossi. 2024. "Comparison of Machine Learning Algorithms Fed with Mobility-Related and Baropodometric Measurements to Identify Temporomandibular Disorders" Sensors 24, no. 11: 3646. https://doi.org/10.3390/s24113646
APA StyleTaborri, J., Molinaro, L., Russo, L., Palmerini, V., Larion, A., & Rossi, S. (2024). Comparison of Machine Learning Algorithms Fed with Mobility-Related and Baropodometric Measurements to Identify Temporomandibular Disorders. Sensors, 24(11), 3646. https://doi.org/10.3390/s24113646