Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems
Abstract
:1. Introduction
2. Basic Principles
2.1. Heterodyne Beat Frequency Method
2.2. Delayed Self-Homodyne Method
2.3. Delayed Self-Heterodyne Method
2.3.1. MZI-Type Delayed Self-Heterodyne Method
2.3.2. MI-Type Delayed Self-Heterodyne Method
2.3.3. Gain Compensation Loop Delay Self-Heterodyne Method
2.3.4. Beat Frequency Power Spectrum Analysis
2.4. Second-Order Stokes Wave Based on Brillouin Scattering
2.5. Linewidth Calculation Method Based on Frequency Noise
2.5.1. Frequency Discrimination Method
2.5.2. Optical Coherent Reception Method Based on Delayed Self-Homodyne/Self-Heterodyne
2.5.3. Optical Coherent Reception Method Based on a 120° Interferometer
2.6. Comparison of Linewidth Characterization Methods
3. Research Progress
3.1. The Heterodyne Method
3.2. Delayed Self-Homodyne Method
3.3. Delayed Self-Heterodyne Method
3.3.1. MZI-Type Delayed Self-Heterodyne Method
3.3.2. MI Delayed Self-Heterodyne Method
3.3.3. Gain Compensation Loop Delayed Self-Heterodyne Method
3.3.4. Beat Frequency Power Spectrum Analysis
3.4. Second-Order Stokes Light Based on Brillouin Scattering
3.5. Linewidth Testing Method Based on Noise Analysis
3.5.1. Frequency Discrimination Method
3.5.2. Optical Coherent Reception Method Based on Delayed Self-Homodyne/Self-Heterodyne
3.5.3. Optical Coherent Reception Method Based on a 120° Interferometer
3.6. Other Measurement Techniques
4. Comparative Analysis and Technical Difficulties
4.1. Comparative Analysis of Linewidth Measurement Techniques
4.2. Technical Difficulties and Solutions for Linewidth Characterization
4.2.1. Coherent Envelope Demodulation Based on an Iterative Algorithm
4.2.2. Self-Coherent Detection Based on a Strong Coherent Envelope
5. Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wicht, A.; Bawamiaa, A.; Krügera, M.; Kürbisa, C.; Schiemangka, M.; Smola, R.; Peters, A.; Tränkle, G. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space. In Proceedings of the SPIE LASE, San Francisco, CA, USA, 28 January–2 February 2017; Volume 100850F. [Google Scholar]
- Ishii, H.; Fujiwara, N.; Watanabe, K.; Kanazawa, S.; Itoh, M.; Takenouchi, H.; Miyamoto, Y.; Kasai, K.; Nakazawa, M. Narrow linewidth tunable DFB laser array integrated with optical feedback planar Lightwave circuit (PLC). IEEE J. Sel. Topics. Quantum Electron. 2017, 23, 1501007. [Google Scholar] [CrossRef]
- Gallegos-Arellano, E.; Vargas-Rodriguez, E.; Guzman-Chavez, A.D.; Cano-Contreras, M.; Cruz, J.L.; Raja-Ibrahim, R.K. Finely tunable laser based on a bulk silicon wafer for gas sensing applications. Laser Phys. Lett. 2016, 13, 065102. [Google Scholar] [CrossRef]
- Wang, Z.; Gasse, K.V.; Moskalenko, V.; Latkowski, S.; Bente, E.; Kuyken, B.; Roelkens, G. A III-V-on-Si ultra-dense comb laser. Light Sci. Appl. 2017, 6, e16260. [Google Scholar] [CrossRef] [PubMed]
- Geiger, R.A.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; et al. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2011, 2, 474. [Google Scholar] [CrossRef] [PubMed]
- Daddato, R.J.; Schulz, K.J.; Zayer, I. Deep space science downlinks via optical communication. In Proceedings of the International Conference on Space Optical Systems and Applications, Santa Monica, CA, USA, 11–13 May 2011; pp. 8–13. [Google Scholar]
- Beck, S.M.; Buck, J.R.; Buell, W.F. Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing. Appl. Opt. 2005, 44, 7621–7629. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, D.J.; Guttierrez, R.C.; Dubovitsky, S. Semiconductor laser linewidth measurements for space interferometry application. In Proceedings of the Optoelectronics ‘99—Integrated Optoelectronic Devices, San Jose, CA, USA, 23–29 January 1999; Volume 3626, pp. 115–122. [Google Scholar]
- Bagheri, M.; Spiers, G.D.; Frez, C. Linewidth measurement of distributed-feedback semiconductor lasers operating near 2.05 μm. IEEE Photonics Technol. Lett. 2015, 27, 1934–1937. [Google Scholar] [CrossRef]
- Minh, T.P.; Hucl, V.; Čížek, M. Narrow-linewidth tunable laser working at 633 nm suitable for industrial interferometry. In Proceedings of the SPIE Optical Metrology, Munich, Germany, 21–25 June 2015; Volume 95254N. [Google Scholar]
- Shi, H.; Chang, P.; Wang, Z. Frequency stabilization of a Cesium Faraday laser with a double-layer vapor cell as frequency reference. IEEE Photonics J. 2022, 14, 1561006. [Google Scholar] [CrossRef]
- Chou, C.W.; Hume, D.B.; Rosenband, T. Optical clocks and relativity. Science 2010, 329, 1630–1633. [Google Scholar] [CrossRef]
- Luvsandamdin, E.; Spießberger, S.; Schiemangk, M. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Appl. Phys. B 2013, 111, 255–260. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Zclcvinsky, T.; Campbell, G.K. Sr lattice clock at 1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 2008, 319, 1805–1808. [Google Scholar] [CrossRef]
- Ip, E.; Kahn, J.M. Carrier synchronization for 3- and 4-bit-per-symbol optical transmission. J. Light. Technol. 2005, 23, 4110–4124. [Google Scholar] [CrossRef]
- Barry, J.R.; Kahn, J.M. Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying. J. Light. Technol. 1992, 10, 1939–1951. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, K.; Chen, Q. Nano-ITLA based on thermo-optically tuned multi-channel Interference widely tunable laser. J. Light. Technol. 2023, 41, 5405–5411. [Google Scholar] [CrossRef]
- Al-Dabbagh, M.D.; Smith, J.; Ostmann, T.K. Characterization of photonic-assisted free-space Sub-THz data transmission. In Proceedings of the 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, QC, Canada, 17–22 September 2023. [Google Scholar]
- Seimetz, M. Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation. In Proceedings of the OFC/NFOEC 2008—2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 February 2008; pp. 1–3. [Google Scholar]
- Huynh, T.N.; O’Carroll, J.; Smyth, F.; Shi, K.; Nguyen, L.; Anandarajah, P.; Phelan, R.; Kelly, B.; Barry, L.P. Low linewidth lasers for enabling high capacity optical communication systems. In Proceedings of the International Conference on Transparent Optical Networks, Coventry, UK, 2–5 July 2012; pp. 1–3. [Google Scholar]
- Li, Y.; Fu, Z.; Zhu, L.; Fang, J.; Zhu, H.; Zhong, J.; Xu, P.; Chen, X.; Wang, J.; Zhan, M. Laser frequency noise measurement using an envelope-ratio method based on a delayed self-heterodyne interferometer. Opt. Commun. 2019, 435, 244–250. [Google Scholar] [CrossRef]
- Ma, W.; Xiong, B.; SUN, C.; Ke, X.; Hao, Z.; Wang, L.; Wang, J.; Han, J.; Li, H.; Luo, Y. Laser frequency noise characterization by self-heterodyne with both long and short delay. Appl. Opt. 2019, 58, 3555–3563. [Google Scholar] [CrossRef] [PubMed]
- Daino, B.; Spano, P.; Tamburrini, M. Phase noise and spectral line shape in semiconductor lasers. IEEE J. Quantum Electron. 1983, 19, 266–270. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Mukai, T.; Saito, S. Quantum phase noise and linewidth of a semiconductor laser. Electron. Lett. 1981, 17, 327–329. [Google Scholar] [CrossRef]
- Zhang, E.; Chen, B.; Zheng, H.; Teng, X. Laser heterodyne interference signal processing method based on phase shift of reference signal. Opt. Express 2018, 26, 8656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, S.; Jiang, Y.; Li, J.; Feng, W.; Lin, W. Analysis on FM-to-AM conversion induced by spatial filter in a high-power laser system. Chin. Opt. Lett. 2012, 10, 4–8. [Google Scholar]
- Ludvigsen, H.; Tossavainen, M.; Kaivola, M. Laser linewidth measurements using self-homodyne detection with short delay. Opt. Commun. 1998, 155, 180–186. [Google Scholar] [CrossRef]
- Ali, A.H.; Abdul-Wahid, S.N. Analysis of self-homodyne and delayed self-heterodyne detections for tunable laser source linewidth measurements. J. Eng. 2012, 2, 1–6. [Google Scholar]
- Okoshi, T.; Kikuchi, K.; Nakayama, A. Novel method for high-resolution measurement of laser output spectrum. Electron. Lett. 1980, 16, 630–631. [Google Scholar] [CrossRef]
- Hun, X.; Bai, Z.; Chen, B.; Wang, J.; Cui, C.; Qi, Y.; Ding, J.; Wang, Y.; Lu, Z. Fabry–P’erot based short pulsed laser linewidth measurement with enhanced spectral resolution. Results Phys. 2022, 37, 105510. [Google Scholar] [CrossRef]
- Zhou, Q.; Qin, J.; Xie, W.; Liu, Z.; Tong, Y.; Dong, Y.; Hu, W. Dynamic frequency-noise spectrum measurement for a frequency-swept DFB laser with short-delayed self-heterodyne method. Opt. Express 2015, 23, 29245. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.N.; Nguyen, L.; Barry, L.P. Phase noise characterization of SGDBR lasers using phase modulation detection method, with delayed self-heterodyne measurements. J. Light. Technol. 2013, 31, 1300–1308. [Google Scholar] [CrossRef]
- Åslund, M.; Michie, A.; Canning, J. Michelson interferometer with Faraday mirrors employed in a delayed self-heterodyne interferometer. In Proceedings of the 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011; pp. 1–3. [Google Scholar]
- Mercer, L.B. 1/f frequency noise effects on self-heterodyne linewidth measurements. J. Light. Technol. 1991, 9, 485–493. [Google Scholar] [CrossRef]
- Liyama, K.; Hayashi, K.; Ida, Y. Delayed self-homodyne method using solitary monomode fibre for laser linewidth measurements. Electron. Lett. 1989, 25, 1589. [Google Scholar]
- Iiyama, K.; Hayashi, K.; Ida, Y. Reflection-type delayed self-homodyne/heterodyne method for optical linewidth measurements. J. Light. Technol. 1991, 9, 635–640. [Google Scholar] [CrossRef]
- Ali, A.H. Simultaneous measurements for tunable laser source linewidth with homodyne detection. Comput. Inf. Sci. 2011, 4, 138–144. [Google Scholar]
- Tsuchida, H. Simple technique for improving the resolution of the delayed self-heterodyne method. Opt. Lett. 1990, 15, 640–642. [Google Scholar] [CrossRef]
- Park, N.; Dawson, J.W.; Vahala, K.J. Linewidth and frequency jitter measurement of an erbium-doped fiber ring laser by using a loss-compensated, delayed self-heterodyne interferometer. Opt. Lett. 1992, 17, 1274–1276. [Google Scholar] [CrossRef]
- Kersey, A.D.; Marrone, M.J.; Davis, M.A. Polarisation-insensitive fiber optic Michelson interferometer. Electron. Lett. 1991, 27, 518–520. [Google Scholar] [CrossRef]
- Ferreira, L.A.; Santos, J.L.; Farahi, F. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements. Appl. Opt. 1995, 34, 6399–6402. [Google Scholar] [CrossRef]
- Canagasabey, A.; Michie, A.; Canning, J. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers. Sensors 2011, 11, 9233–9241. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Meng, Z.; Tu, X.B. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser. Opt. Lett. 2013, 38, 2041–2043. [Google Scholar] [CrossRef]
- Chen, M.; Meng, Z.; Sun, Q. Mechanism and characteristics of a fast-tuning Brillouin/erbium fiber laser. Opt. Express 2014, 22, 15039–15048. [Google Scholar] [CrossRef]
- Tsuchida, H. Limitation and improvement in the performance of recirculating delayed self-heterodyne method for high-resolution laser lineshape measurement. Opt. Express 2012, 20, 11679–11687. [Google Scholar] [CrossRef]
- Tsuchida, H. Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method. Opt. Lett. 2011, 36, 681–683. [Google Scholar] [CrossRef]
- Dawson, J.W.; Park, N.; Vahala, K.J. An improved delayed self-heterodyne interferometer for linewidth measurements. IEEE Photonics Technol. Lett. 1992, 4, 1062–1066. [Google Scholar] [CrossRef]
- Han, M.; Wang, A. Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement. Appl. Phys. Lett. 2005, 81, 53–58. [Google Scholar] [CrossRef]
- Chen, M.; Meng, Z.; Wang, J.F. Ultra-narrow linewidth measurement based on Voigt profile fitting. Opt. Express 2015, 23, 6803–6808. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Meng, Z.; Zhang, Y.C. Ultranarrow-linewidth Brillouin/erbium fiber laser based on 45-cm erbium-doped fiber. IEEE Photonics J. 2015, 7, 1500606. [Google Scholar] [CrossRef]
- Henning, I.D.; Collins, J.V. Measurements of the semiconductor laser linewidth broadening factor. Electron. Lett. 1983, 19, 927–929. [Google Scholar] [CrossRef]
- Kuntz, M. A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function. J. Quant. Spectrosc. Radiat. Transf. 1997, 57, 819–824. [Google Scholar] [CrossRef]
- Sevillano, P.; Subías, J.; Heras, C.; Pelayo, J.; Villuendas, F. Brillouin induced self-heterodyne technique for narrow line width measurement. Opt. Express 2010, 18, 15201–15206. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Yang, J.; Zhai, L.; Wang, R.; Cao, Z.; Yu, B. Self-mixing interference measurement system of a fiber ring laser with ultra-narrow linewidth. Opt. Express 2012, 20, 8598–8607. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhang, L.; Xu, Y.; Lu, P.; Chen, L.; Bao, X. Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement. Opt. Express 2016, 24, 28353–28360. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xiang, D.; Ou, Z.; Lu, P.; Bao, X. Random Fabry–Perot resonator-based sub-kHz Brillouin fiber laser to improve spectral resolution in linewidth measurement. Opt. Lett. 2015, 40, 1920–1923. [Google Scholar] [CrossRef]
- Roy, A.S.; Kumar, K.P. Low jitter measurement of laser linewidth using Brillouin induced self-heterodyne method. In Proceedings of the Frontiers in Optics 2017, Washington, DC, USA, 18–21 September 2017. [Google Scholar]
- Nazarathy, M.; Sorin, W.V.; Baney, D.M. Spectral analysis of optical mixing measurements. J. Light. Technol. 1989, 7, 1083–1096. [Google Scholar] [CrossRef]
- Nicati, P.A.; Toyama, K.; Huang, S. Temperature effects in a Brillouin fiber ring laser. Opt. Lett. 1993, 18, 2123–2125. [Google Scholar] [CrossRef]
- Nicati, P.A.; Toyama, K. Shaw, Frequency stability of a Brillouin fiber ring laser. J. Light. Technol. 1995, 13, 1445–1451. [Google Scholar] [CrossRef]
- Ip, E.; Kahn, J.M.; Anthon, D. Linewidth measurements of MEMS-based tunable lasers for phase-locking applications. IEEE Photonics Technol. Lett. 2005, 17, 2029–2031. [Google Scholar] [CrossRef]
- Llopis, O.; Merrer, P.H.; Brahimi, H. Phase noise measurement of a narrow linewidth CW laser using delay line approaches. Opt. Lett. 2011, 36, 2713–2715. [Google Scholar] [CrossRef] [PubMed]
- Tkach, R.W.; Chraplyvy, A.R. Phase noise and linewidth in an InGaAsP DFB laser. J. Light. Technol. 1986, LT-4, 1711–1716. [Google Scholar] [CrossRef]
- Tombez, L.; Schilt, S.; Francesco, J.D. Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver. Appl. Phys. B 2012, 109, 407–414. [Google Scholar] [CrossRef]
- Zhou, Q.; Qin, J.; Xie, W. Power-area method to precisely estimate laser linewidth from its frequency-noise spectrum. Appl. Opt. 2015, 54, 8282–8289. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, F.P.; Feng, T. Demonstration of linewidth measurement based on phase noise analysis for a single frequency fiber laser in the 2 μm band. Laser Phys. 2019, 29, 075102. [Google Scholar] [CrossRef]
- Camatel, S.; Ferrero, V. Narrow linewidth CW laser phase noise characterization methods for coherent transmission system applications. J. Light. Technol. 2008, 26, 3048–3055. [Google Scholar] [CrossRef]
- Song, H.; Song, J. Robust terahertz self-heterodyne system using a phase noise compensation technique. Opt. Express 2015, 23, 21181–21192. [Google Scholar] [CrossRef]
- Mertenskötter, L.; Kantner, M. Frequency Noise Characterization of Narrow-Linewidth Lasers: A Bayesian Approach; Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS): Berlin, Germany, 2023; pp. 2198–5855. [Google Scholar]
- Bucalovic, N.; Dolgovskiy, V.; Schori, C. Experimental validation of a simple approximation to determine the linewidth of a laser from its frequency noise spectrum. Appl. Opt. 2012, 51, 4582–4588. [Google Scholar] [CrossRef]
- Kikuchi, K.; Okoshi, T. Measurement of FM noise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor. IEEE J. Quantum Electron. 1985, 21, 1814–1818. [Google Scholar] [CrossRef]
- Bava, E.; Galzerano, G.; Svelto, S. Frequency-noise sensitivity and amplitude-noise immunity of discriminators based on fringes-side fabry-perot cavities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1150–1159. [Google Scholar] [CrossRef]
- Maher, R.; Thomsen, B. Dynamic linewidth measurement technique using digital intradyne coherent receivers. Opt. Express 2011, 19, B313–B322. [Google Scholar] [CrossRef] [PubMed]
- Ly-Gagnon, D.S. Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J. Light. Technol. 2006, 24, 12–21. [Google Scholar] [CrossRef]
- Ip, E.; Lau, A.; Barros, D. Coherent detection in optical fiber systems. Opt. Express 2008, 16, 753–791. [Google Scholar] [CrossRef]
- Huynh, T.N.; Smyth, F.; Nguyen, L. Effects of phase noise of monolithic tunable laser on coherent communication systems. Opt. Express 2012, 20, B244–B249. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Light. Technol. 2016, 34, 157–179. [Google Scholar] [CrossRef]
- Huynh, T.N.; Nguyen, L.; Barry, L.P. Delayed self-heterodyne phase noise measurements with coherent phase modulation detection. IEEE Photonics Technol. Lett. 2012, 24, 249–251. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Feng, Z. Narrow-linewidth swept laser phase reconstruction and noise measurement technology and its applications. Opt. Express 2018, 26, 32958–32970. [Google Scholar] [CrossRef]
- Luo, X.C.; Chen, C.; Ning, Y.Q. High linear polarization, narrow linewidth hybrid semiconductor laser with an external birefringence waveguide Bragg grating. Opt. Express 2021, 29, 33109–33120. [Google Scholar] [CrossRef]
- Chen, J.Q.; Chen, C.; Guo, Q. A 1-μm-band injection-locked semiconductor laser with a high side-mode suppression ratio and narrow linewidth. Sensors 2022, 22, 9239. [Google Scholar] [CrossRef] [PubMed]
- Sutili, T.; Figueiredo, R.C.; Condorti, E. Laser linewidth and phase noise evaluation using heterodyne offline signal processing. J. Light. Technol. 2016, 34, 4933–4940. [Google Scholar] [CrossRef]
- Von-Bandel, N.; Myara, M.; Sellahi, M. Time-dependent laser linewidth: Beat-note digital acquisition and numerical analysis. Opt. Express 2016, 24, 27961–27978. [Google Scholar] [CrossRef]
- Ricciardi, I.; Mosca, S.; Parisi, M. Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization. Opt. Lett. 2015, 40, 4743–4747. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Chen, W.; Pan, Y. Pulsed laser linewidth measurement using Fabry–Pérot scanning interferometer. Results Phys. 2016, 6, 698–703. [Google Scholar] [CrossRef]
- Lee, H.; Suh, M.G.; Chen, T.; Li, J.; Diddams, S.A.; Vahala, K.J. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun. 2013, 4, 2468. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, N.G.; Koptyaev, S.; Lihachev, G.V.; Voloshin, A.S.; Gorodnitskiy, A.S.; Ryabko, M.V. Narrow-linewidth lasing and soliton kerr microcombs with ordinary laser diodes. Nat. Photon. 2018, 12, 694–698. [Google Scholar] [CrossRef]
- Gundavarapu, S.; Brodnik, G.M.; Puckett, M.; Huffman, T.; Bose, D.; Behunin, R. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 2019, 13, 60–67. [Google Scholar] [CrossRef]
- Chauhan, N.; Isichenko, A.; Liu, K.; Wang, J.; Zhao, Q.; Behunin, R.O. Visible light photonic integrated Brillouin laser. Nat. Commun. 2021, 12, 4685. [Google Scholar] [CrossRef]
- Peng, Y. A novel scheme for hundred-hertz linewidth measurements with the self-heterodyne method. Chin. Phys. Lett. 2013, 30, 084208. [Google Scholar] [CrossRef]
- Kojima, K.; Horiguchi, Y.; Koikeakino, T. Separation of semiconductor laser intrinsic linewidth and 1/f noise using multiple fiber lengths with the delayed self-heterodyne method. In Proceedings of the 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 22–26 March 2015. paper W2A.18. [Google Scholar]
- Chen, J.Q.; Chen, C.; Guo, Q. Linear polarization and narrow-linewidth external-cavity semiconductor laser based on birefringent Bragg grating optical feedback. Opt. Laser Technol. 2024, 170, 110211. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, T.; Cao, Z. Laser linewidth measurement based on amplitude difference comparison of coherent envelope. IEEE Photonics Technol. Lett. 2016, 28, 759–762. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, T.; Liu, M. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope. Sci. Rep. 2017, 7, 41988. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wan, M.; Wu, J. Precise laser linewidth measurement by feature extraction with a short-delay self-homodyne. Appl. Opt. 2022, 61, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ke, C.; Zhong, Y. Ultra-narrow-linewidth measurement utilizing dual-parameter acquisition through a partially coherent light interference. Opt. Express 2020, 28, 8484–8493. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Bai, Z.; Jin, D. Narrow laser-linewidth measurement using short delay self-heterodyne interferometry. Opt. Express 2022, 30, 30600–30610. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Bai, Z.; Chen, X. A Lorentzian narrow-linewidth demodulation scheme based on a short fiber delayed self-heterodyne technique. Appl. Phys. Express 2022, 15, 106502. [Google Scholar]
- Zhao, Z.; Bai, Z.; Jin, D. The influence of noise floor on the measurement of laser linewidth using short-delay-length self-heterodyne/homodyne techniques. Micromachines 2022, 13, 1311. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Jiao, D.; Deng, X. A Polarization-insensitive recirculating delayed self-heterodyne method for sub-kilohertz laser linewidth measurement. Photonics 2021, 8, 137. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, Y.; Gu, H. Improvement and analysis of a recirculating delayed self-heterodyne interferometer for laser linewidth measurement. Opt. Fiber Technol. 2022, 71, 102945. [Google Scholar] [CrossRef]
- Chen, X.P.; Han, M.; Zhu, Y.Z. Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultra-narrow laser linewidth measurement. Appl. Opt. 2006, 45, 7712–7717. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.S.; Krishnamurthy, P.K. Brillouin-induced self-heterodyne method for low jitter measurement of laser linewidth. J. Opt. Soc. Am. B 2019, 36, 3145–3150. [Google Scholar] [CrossRef]
- Wang, J.; Bai, Z.; Hun, X. Stokes linewidth narrowing by stimulated Brillouin scattering in liquid media. Appl. Phys. Express 2023, 16, 012014. [Google Scholar] [CrossRef]
- Tran, M.A.; Huang, D.; Bowers, J.E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics 2019, 4, 111101. [Google Scholar] [CrossRef]
- Sorin, W.V.; Chang, K.W.; Conrad, G.A. Frequency domain analysis of an optical FM discriminator. J. Light. Technol. 1992, 10, 787–793. [Google Scholar] [CrossRef]
- Yamaoka, S.; Mori, Y.; Sato, K.I. Novel laser-linewidth measurement based on three-wave interference using digital coherent receiver. In Proceedings of the Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Munich, Germany, 25–29 June 2017; p. 1. [Google Scholar]
- Yamaoka, S.; Mori, Y.; Hasegawa, H. Novel FM-noise spectrum measurement based on three-wave-interference. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim, Hong Kong, China, 29 July–3 August 2018; pp. 1–2. [Google Scholar]
- Yuan, Z.; Wang, H.; Liu, P. Correlated self-heterodyne method for ultra-low-noise laser linewidth measurements. Opt. Express 2022, 30, 25147–25161. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yuan, Z.; Jin, W. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator. Optica 2023, 10, 1241–1244. [Google Scholar] [CrossRef]
- Lee, H.; Chen, T.; Li, J. Chemically etched ultrahigh-q wedge-resonator on a silicon chip. Nat. Photonics 2012, 6, 369–373. [Google Scholar] [CrossRef]
- Walls, W.F. Cross-correlation phase noise measurements. In Proceedings of the Frequency Control Symposium, Hershey, PA, USA, 27–29 May 1992; pp. 257–261. [Google Scholar]
- Xu, D.; Chen, D.; Wei, F. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3×3 optical fiber coupler. Opt. Express 2015, 23, 22386–22393. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, F.; Ding, Z. Measurement method of noise characterization of highly coherent laser and its applications in coherent sensing and imaging. In Proceedings of the 2019 International Conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology, Beijing, China, 2–4 November 2019; Volume 114380S. [Google Scholar]
- Luo, X.C.; Chen, C.; Ning, Y.Q. Single polarization, narrow linewidth hybrid laser based on selective polarization mode feedback. Opt. Laser Technol. 2022, 154, 108340. [Google Scholar] [CrossRef]
- Chen, J.Q.; Chen, C.; Guo, Q. Narrow-linewidth external cavity semiconductor laser based on permanent index modulated grating optical feedback for radiation resistance. J. Lumincense 2023, 258, 119812. [Google Scholar] [CrossRef]
- Villafranca, A.; Lasobras, J.; Lazaro, J.A. Characterization of the main semiconductor laser static and dynamic working parameters from CW optical spectrum measurements. IEEE J. Quantum Electron. 2007, 43, 116–122. [Google Scholar] [CrossRef]
- Domenico, D.G.; Schilt, S.; Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 2010, 49, 4801–4807. [Google Scholar] [CrossRef] [PubMed]
- Ravaro, M.; Barbieri, S.; Santarelli, G. Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb. Opt. Express 2013, 20, 25654–25661. [Google Scholar] [CrossRef] [PubMed]
- Cardilli, M.C.; Dabbicco, M.; Mezzapesa, F.P. Linewidth measurement of mid infrared quantum cascade laser by optical feedback interferometry. Appl. Phys. Lett. 2016, 108, 6165–6206. [Google Scholar] [CrossRef]
- Giuliani, G.; Norgia, M. Laser diode linewidth measurement by means of self-mixing interferometry. IEEE Photonics Technol. Lett. 2000, 12, 1028–1030. [Google Scholar] [CrossRef]
- Villafranca, A.; Lázaro, J.A.; Salinas, I. Measurement of the linewidth enhancement factor in DFB lasers using a high-resolution optical spectrum analyzer. IEEE Photonics Technol. Lett. 2005, 17, 2268–2270. [Google Scholar] [CrossRef]
- Gallion, P.; Mendieta, F.J.; Leconte, R. Single-frequency laser phase-noise limitation in single-mode optical-fiber coherent-detection systems with correlated fields. J. Opt. Soc. Am. 1982, 72, 1167–1170. [Google Scholar] [CrossRef]
- Kikuchi, K. Effect of l/f-type FM noise on semiconductor laser linewidth residual in high-power limit. IEEE J. Quantum Electron. 1989, 25, 684–688. [Google Scholar] [CrossRef]
- Murakami, M.; Saito, S. Evolution of field spectrum due to fiber-nonlinearity-induced phase noise in in-line optical amplifier systems. IEEE Photonics Technol. Lett. 1992, 4, 1269–1272. [Google Scholar] [CrossRef]
- Dong, J.; Huang, J.C.; Li, T. Observation of fundamental thermal noise in optical fibers down to infrasonic frequencies. Appl. Phys. Lett. 2016, 108, 021108. [Google Scholar] [CrossRef]
- Kessler, T.; Hagemann, C.; Grebing, C. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 2012, 6, 687–692. [Google Scholar] [CrossRef]
- Chen, X.; Amin, A.A.; Shieh, W. Characterization and monitoring of laser linewidths in coherent systems. J. Light. Technol. 2011, 29, 2533–2537. [Google Scholar] [CrossRef]
- Horak, P.; Loh, W.H. On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers. Opt. Express 2006, 14, 3923–3928. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, B.R.; Wieser, W.; Eigenwillig, C.M. Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers. Opt. Lett. 2010, 35, 3733–3735. [Google Scholar] [CrossRef] [PubMed]
- San, H.S.; Wen, J.M.; Liu, J. Measurement system of ultra-wideband frequency response based on optical heterodyne technique. Acta Opt. Sin. 2005, 25, 1497–1500. [Google Scholar]
- Bartalini, S.; Borri, S.; Galli, I. Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Opt. Express 2011, 19, 17996–18003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Z.; Huang, L.G.; Guan, T.Y.; Mao, Y.Q.; Dang, L.Y.; Lan, T.Y.; Shi, L.L.; Gao, L.; Zhu, T. Laser coherence linewidth measurement based on deterioration of coherent envelope. Opt. Laser Technol. 2024, 172, 110498. [Google Scholar] [CrossRef]
- Yao, P.H.; Zhang, Z.; Zhou, J.N.; Jia, Y.X.; Jin, Y.; Ma, X.S. Application of sine-cosine demodulation technology in linewidthmeasurement of narrow linewidth single frequency laser. In Proceedings of the Applied Optics and Photonics China 2023 (AOPC2023): Optic Fiber Gyro, Beijing, China, 25–27 July 2023; Volume 12968, p. 1296819. [Google Scholar]
- Zhang, Y.H.; Cao, X.H.; Chen, W. Precise linewidths measurement using short delay self-heterodyne interferometry and multiple peak-to-valley differences. In Proceedings of the Applied Optics and Photonics China 2023 (AOPC2023): AI in Optics and Photonics, Beijing, China, 25–27 July 2023; Volume 12966, p. 129660Y. [Google Scholar]
- Deng, S.; Li, M.; Gao, H.Y. A recirculating delayed self-heterodyne method using a Mach-Zehnder modulator for kHz-linewidth measurement. Opt. Fiber Technol. 2016, 31, 156–160. [Google Scholar] [CrossRef]
- He, Y.; Hu, S.; Liang, S. High-precision narrow laser linewidth measurement based on coherent envelope demodulation. Opt. Fiber Technol. 2019, 50, 200–205. [Google Scholar] [CrossRef]
- Richter, L.; Mandelberg, H.; Kruger, M. Linewidth determination from self-heterodyne measurements with sub-coherence delay times. IEEE J. Quantum Electron. 1986, 22, 2070–2074. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Yan, W. Impacting factors in linewidth measurement of single-frequency lasers. In Proceedings of the Applications and Technology 2018, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Inoue, M.; Koshikiya, Y.; Fan, X. Coherence characterization of narrow-linewidth beam by C-OFDR based Rayleigh speckle analysis. Opt. Express 2011, 19, 19790–19796. [Google Scholar] [CrossRef]
- Aellen, T.; Maulini, R.; Terazzi, R. Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser. Appl. Phys. Lett. 2006, 89, 091121. [Google Scholar] [CrossRef]
- Provost, J.G.; Grillot, F. Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer. IEEE Photonics J. 2011, 3, 476–488. [Google Scholar] [CrossRef]
- Jumpertz, L.; Michel, F.; Pawlus, R. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques. AIP Adv. 2016, 6, 015212. [Google Scholar] [CrossRef]
- Liu, G.; Wu, C.; Wang, F. Measurement of the linewidth enhancement factor based on nonlinear polarization rotation of semiconductor optical amplifier. Appl. Opt. 2015, 54, 5162–5166. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Jin, X.; Chuang, S.L. Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique. IEEE Photonics Technol. Lett. 2001, 13, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Coluccelli, N.; Cassinerio, M.; Gambetta, A. Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator. Sci. Rep. 2015, 5, 16338. [Google Scholar] [CrossRef]
- Li, Y.; Huang, D.; Chen, H. Phase noise of fourier domain mode locked laser based coherent detection systems. J. Light. Technol. 2022, 40, 615–623. [Google Scholar] [CrossRef]
Methods | Principles | Advantages | Disadvantages | References |
---|---|---|---|---|
Heterodyne | Beat frequency | — | Strict requirements for reference light sources | [26,27] |
Delayed self-homodyne | Mach–Zehnder configuration | Avoiding dependence on reference laser | Zero-frequency signal affect the beat frequency | [28,29] |
MZI delayed self-heterodyne | Decoherent coupling | Avoiding interference from zero frequency | Long fiber length can introduce 1/f noise | [30,31,32,33] |
MI delayed self-heterodyne | Decoherent coupling | Reduce fiber by half for same optical path | Long fiber length can introduce 1/f noise | [40] |
Loop delayed self-heterodyne | Gain compensation | Can measure wide range of laser bands | Unable to eliminate the impact of 1/f noise | [41,42] |
Second order Stokes wave | Beat frequency | High measurement accuracy | Sensitive to system parameters | [53,54] |
Frequency discrimination | FM-AM | Avoiding interference from zero frequency | Frequency range is limited and precise control is required | [71,72] |
Optical coherent reception | Coherent mixing | Directly measure instantaneous phase change | Complex structure and high cost | [73,74,75] |
Structures | Methods | Linewidth | Output Power | Wavelength | Time |
---|---|---|---|---|---|
DFB Laser | High resolution spectral analyzer | 8.7 MHz | — | 1550 nm | 2005 [122] |
VCSEL laser | — | 1.95 mW | 1550 nm | 2007 [117] | |
Quantum cascade laser | Near-infrared frequency comb | 230 Hz | 2 mW | 780 nm | 2012 [119] |
Brillouin fiber laser | Voigt fitting | 40 Hz | 3 mW | — | 2015 [49] |
Mid-infrared quantum laser | Optical feedback interferometry | 280 kHz | — | — | 2016 [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-Q.; Chen, C.; Sun, J.-J.; Zhang, J.-W.; Liu, Z.-H.; Qin, L.; Ning, Y.-Q.; Wang, L.-J. Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems. Sensors 2024, 24, 3656. https://doi.org/10.3390/s24113656
Chen J-Q, Chen C, Sun J-J, Zhang J-W, Liu Z-H, Qin L, Ning Y-Q, Wang L-J. Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems. Sensors. 2024; 24(11):3656. https://doi.org/10.3390/s24113656
Chicago/Turabian StyleChen, Jia-Qi, Chao Chen, Jing-Jing Sun, Jian-Wei Zhang, Zhao-Hui Liu, Li Qin, Yong-Qiang Ning, and Li-Jun Wang. 2024. "Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems" Sensors 24, no. 11: 3656. https://doi.org/10.3390/s24113656
APA StyleChen, J. -Q., Chen, C., Sun, J. -J., Zhang, J. -W., Liu, Z. -H., Qin, L., Ning, Y. -Q., & Wang, L. -J. (2024). Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems. Sensors, 24(11), 3656. https://doi.org/10.3390/s24113656