Towards Mass-Scale IoT with Energy-Autonomous LoRaWAN Sensor Nodes
Abstract
:1. Introduction
2. Related Works
2.1. Background on LoRaWAN
2.2. Internet of Battery-Less Things
3. Design of the Energy-Autonomous and Battery-Free LoRaWAN Sensor Node
4. System Configuration Setup and Experimental Procedure
4.1. EAWSN Configuration for LoRaWAN Protocol
4.2. Gateway Setup and Configuration
4.3. Network Server Setup
4.4. Maximum Achievable Packet Length
4.5. Determining the Coverage
5. Experimental Results
5.1. Analyzing the Maximum Packet Length
5.2. Analyzing the Coverage
6. Discussion
6.1. EAWSN under Different Light Condition and Recommended Setting
6.2. Limitations and Possible Solutions
6.3. Mass-Scale Capability Eliminating Battery Replacement
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, V. Ambient-Energy Powered Multi-Hop Internet of Things. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Romer, K.; Mattern, F. The design space of wireless sensor networks. IEEE Wirel. Commun. 2004, 11, 54–61. [Google Scholar] [CrossRef]
- La Rosa, R.; Livreri, P.; Trigona, C.; Di Donato, L.; Sorbello, G. Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer. Sensors 2019, 19, 2660. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.L.; Boulebnane, L.; Croce, D.; Livreri, P.; Tinnirello, I. An Energy-Autonomous and Maintenance-Free Wireless Sensor Platform with LoRa Connectivity. In Proceedings of the 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), Oshawa, ON, Canada, 29 August–1 September 2023. [Google Scholar] [CrossRef]
- Wang, X.; Rao, V.S.; Prasad, R.V.; Niemegeers, I. Choose wisely: Topology control in Energy-Harvesting wireless sensor networks. In Proceedings of the 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016; pp. 1054–1059. [Google Scholar] [CrossRef]
- Giuliano, F.; Pagano, A.; Croce, D.; Vitale, G.; Tinnirello, I. Adaptive algorithms for batteryless lora-based sensors. Sensors 2023, 23, 6568. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.L.; Dehollain, C.; Burg, A.; Costanza, M.; Livreri, P. An Energy-Autonomous Wireless Sensor With Simultaneous Energy Harvesting and Ambient Light Sensing. IEEE Sens. J. 2021, 21, 13744–13752. [Google Scholar] [CrossRef]
- Trigona, C.; Ando, B.; Baglio, S.; La Rosa, R.; Zoppi, G. Sensors for Kinetic Energy Measurement Operating on “Zero-Current Standby”. IEEE Trans. Instrum. Meas. 2017, 66, 812–820. [Google Scholar] [CrossRef]
- La Rosa, R.; Pandiyan, A.Y.S.; Trigona, C.; Andò, B.; Baglio, S. An integrated circuit to null standby using energy provided by MEMS sensors. ACTA IMEKO 2020, 9, 144. [Google Scholar] [CrossRef]
- Alioto, M.; Shahghasemi, M. The Internet of Things on its edge: Trends toward its tipping point. IEEE Consum. Electron. Mag. 2018, 7, 77–87. [Google Scholar] [CrossRef]
- Martinez, B.; Monton, M.; Vilajosana, I.; Prades, J.D. The power of models: Modeling power consumption for IoT devices. IEEE Sens. J. 2015, 15, 5777–5789. [Google Scholar] [CrossRef]
- Garlisi, D.; Pagano, A.; Giuliano, F.; Croce, D.; Tinnirello, I. A Coexistence Study of Low-Power Wide-Area Networks based on LoRaWAN and Sigfox. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 26–29 March 2023; pp. 1–7. [Google Scholar] [CrossRef]
- LoRa® and LoRaWAN®: A Technical Overview. Available online: https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf (accessed on 26 August 2023).
- Lavric, A.; Popa, V. A LoRaWAN: Long range wide area networks study. In Proceedings of the 2017 International Conference on Electromechanical and Power Systems (SIELMEN), Iasi, Romania, 11–13 October 2017; pp. 417–420. [Google Scholar] [CrossRef]
- Pizzotti, M.; Perilli, L.; Del Prete, M.; Fabbri, D.; Canegallo, R.; Dini, M.; Masotti, D.; Costanzo, A.; Franchi Scarselli, E.; Romani, A. A long-distance RF-powered sensor node with adaptive power management for IoT applications. Sensors 2017, 17, 1732. [Google Scholar] [CrossRef]
- Karimi, M.; Wang, Y.; Kim, H. Energy-Adaptive Real-time Sensing for Batteryless Devices. In Proceedings of the 2022 IEEE 28th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Taipei, Taiwan, 23–25 August2022; pp. 205–211. [Google Scholar]
- Chen, K.; Gao, H.; Cai, Z.; Chen, Q.; Li, J. Distributed energy-adaptive aggregation scheduling with coverage guarantee for battery-free wireless sensor networks. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 1018–1026. [Google Scholar]
- Yang, F.; Thangarajan, A.S.; Ramachandran, G.S.; Krishnamachari, B.; Joosen, W.; Huygens, C.; Hughes, D. Astar: Sustainable battery free energy harvesting for heterogeneous platforms and dynamic environments. In Proceedings of the 2019 International Conference on Embedded Wireless Systems and Networks, EWSN 2019, Beijing, China, 25–27 February 2019; pp. 71–82. [Google Scholar]
- La Rosa, R.; Livreri, P.; Dehollain, C.; Costanza, M.; Trigona, C. An energy autonomous and battery-free measurement system for ambient light power with time domain readout. Measurement 2021, 186, 110158. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, F.; Wei, J. Experimental Evaluation of the Packet Reception Performance of LoRa. Sensors 2021, 21, 1071. [Google Scholar] [CrossRef]
- Pasolini, G. On the LoRa Chirp Spread Spectrum Modulation: Signal Properties and Their Impact on Transmitter and Receiver Architectures. IEEE Trans. Wirel. Commun. 2022, 21, 357–369. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, H.H.; Barton, R.; Grossetete, P. Efficient Design of Chirp Spread Spectrum Modulation for Low-Power Wide-Area Networks. IEEE Internet Things J. 2019, 6, 9503–9515. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Wang, J. DyLoRa: Towards Energy Efficient Dynamic LoRa Transmission Control. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 2312–2320. [Google Scholar] [CrossRef]
- Loh, F.; Geißler, S.; Hoßfeld, T. LoRaWAN Network Planning in Smart Environments: Towards Reliability, Scalability, and Cost Reduction. 2022. Available online: https://d-nb.info/1266015175/34 (accessed on 30 June 2024).
- Hoßfeld, T.; Raffeck, S.; Loh, F.; Geißler, S. Analytical model for the energy efficiency in low power iot deployments. In Proceedings of the 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), Milan, Italy, 27 June–1 July 2022; pp. 19–24. [Google Scholar]
- Loh, F.; Raffeck, S.; Geißler, S.; Hoßfeld, T. Generic Model to Quantify Energy Consumption for Different LoRaWAN Channel Access Methods. In Proceedings of the 2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece, 10–12 October 2022; pp. 290–295. [Google Scholar]
- Pirri, A.; Pirri, M.; Leonardi, L.; Bello, L.L.; Patti, G. Towards Supporting Multiple MAC Protocols on a LoRaWAN End-Device for Industrial Applications. In Proceedings of the 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Sinaia, Romania, 12–15 September 2023; pp. 1–4. [Google Scholar]
- Vatcharatiansakul, N.; Tuwanut, P.; Pornavalai, C. Experimental performance evaluation of LoRaWAN: A case study in Bangkok. In Proceedings of the 2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE), NakhonSiThammarat, Thailand, 12–14 July 2017. [Google Scholar] [CrossRef]
- Cheong, P.S.; Bergs, J.; Hawinkel, C.; Famaey, J. Comparison of LoRaWAN classes and their power consumption. In Proceedings of the 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT), Leuven, Belgium, 14 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W. A Study of LoRa: Long Range, Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466. [Google Scholar] [CrossRef] [PubMed]
- Jebril, A.; Sali, A.; Ismail, A.; Rasid, M. Overcoming Limitations of LoRa Physical Layer in Image Transmission. Sensors 2018, 18, 3257. [Google Scholar] [CrossRef] [PubMed]
- Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Malta, 13–17 November 2016; pp. 59–67. [Google Scholar] [CrossRef]
- Ferrari, P.; Flammini, A.; Rizzi, M.; Sisinni, E.; Gidlund, M. On the evaluation of LoRaWAN virtual channels orthogonality for dense distributed systems. In Proceedings of the 2017 IEEE International Workshop on Measurement and Networking, Naples, Italy, 27–29 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Caillouet, C.; Heusse, M.; Rousseau, F. Optimal SF Allocation in LoRaWAN Considering Physical Capture and Imperfect Orthogonality. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Croce, D.; Gucciardo, M.; Mangione, S.; Santaromita, G.; Tinnirello, I. Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance. IEEE Commun. Lett. 2018, 22, 796–799. [Google Scholar] [CrossRef]
- Ahmed, S.; Islam, B.; Yildirim, K.S.; Zimmerling, M.; Pawełczak, P.; Alizai, M.H.; Lucia, B.; Mottola, L.; Sorber, J.; Hester, J. The Internet of Batteryless Things. Commun. ACM 2024, 67, 64–73. [Google Scholar] [CrossRef]
- Church, C.; Wuennenberg, L. Sustainability and Second Life; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2019; Available online: https://www.iisd.org/sites/default/files/publications/sustainability-second-life-cobaltlithiumrecycling.pdf (accessed on 30 June 2024).
- Delgado, C.; Sanz, J.M.; Blondia, C.; Famaey, J. Batteryless LoRaWAN communications using energy harvesting: Modeling and characterization. IEEE Internet Things J. 2020, 8, 2694–2711. [Google Scholar] [CrossRef]
- Georgiou, O.; Psomas, C.; Demarchou, E.; Krikidis, I. LoRa Network Performance Under Ambient Energy Harvesting and Random Transmission Schemes. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Sabovic, A.; Delgado, C.; Subotic, D.; Jooris, B.; De Poorter, E.; Famaey, J. Energy-aware sensing on battery-less lorawan devices with energy harvesting. Electronics 2020, 9, 904. [Google Scholar] [CrossRef]
- STMicroelectronics. STM32WL5x Product Page. 2021. Available online: https://www.st.com/en/microcontrollers-microprocessors/stm32wl5x.html (accessed on 28 July 2023).
- Panasonic. Amorton E Series Brochure. 2021. Available online: https://panasonic.net/electricworks/amorton/assets/pdf/Brochures_Amorton_E_2.pdf (accessed on 29 July 2023).
- Electronics, M. Tantalum Ultra Low ESR COTS-Plus Capacitors. 2021. Available online: https://eu.mouser.com/pdfDocs/TBM-COTS-Plus.pdf (accessed on 1 July 2021).
- STMicroelectronics: Our Technology Starts with You. 2023. Available online: https://www.st.com/content/st_com/en.html (accessed on 2 September 2023).
- STMicroelectronics. Getting Started with the P-NUCLEO-LRWAN2 and P-NUCLEO-LRWAN3 Starter Packs. 2021. Available online: https://www.st.com/resource/en/user_manual/um2587-getting-started-with-the-pnucleolrwan2-and-pnucleolrwan3-starter-packs-stmicroelectronics.pdf (accessed on 1 July 2021).
- Rachmani, A.F.; Zulkifli, F.Y. Design of iot monitoring system based on lora technology for starfruit plantation. In Proceedings of the TENCON 2018-2018 IEEE Region 10 Conference, Jeju, Republic of Korea, 28–31 October 2018; pp. 1241–1245. [Google Scholar]
- Rivera Guzmán, E.F.; Mañay Chochos, E.D.; Chiliquinga Malliquinga, M.D.; Baldeón Egas, P.F.; Toasa Guachi, R.M. LoRa Network-Based System for Monitoring the Agricultural Sector in Andean Areas: Case Study Ecuador. Sensors 2022, 22, 6743. [Google Scholar] [CrossRef]
- Ballerini, M.; Polonelli, T.; Brunelli, D.; Magno, M.; Benini, L. Experimental Evaluation on NB-IoT and LoRaWAN for Industrial and IoT Applications. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 1729–1732. [Google Scholar] [CrossRef]
- LoRa-Alliance. RP002-1.0.4 Regional Parameters. 2022. Available online: https://resources.lora-alliance.org/technical-specifications/rp002-1-0-4-regional-parameters (accessed on 30 June 2024).
- Deng, Y.; Chen, Z.; Yao, X.; Hassan, S.; Ibrahim, A.M. Parallel offloading in green and sustainable mobile edge computing for delay-constrained IoT system. IEEE Trans. Veh. Technol. 2019, 68, 12202–12214. [Google Scholar] [CrossRef]
- Oliveira, M.; Chauhan, S.; Pereira, F.; Felgueiras, C.; Carvalho, D. Blockchain protocols and edge computing targeting industry 5.0 needs. Sensors 2023, 23, 9174. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.M.; Bayramov, S.; Kiani Kalejahi, B. Internet of things applications: Opportunities and threats. Wirel. Pers. Commun. 2022, 122, 451–476. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.; Elkotby, H.; Haque, T.; Pragada, R.; Castor, D. Eliminating battery replacement throughout the useful life of IoT devices with limited-capacity batteries: Analysis and design of a zero energy air interface. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
Class | Description | Energy Consumption |
---|---|---|
A | Sensor triggers, Followed by a downlink response. | Most efficient |
B | Communication occurs in slots Simple-synchronized beacon | Controlled downlink |
C | Communication without delay.ensuring Downlink communication without delay. | High power consumption |
Spreading Factor (SF) | Chips Length |
---|---|
7 | 128 |
8 | 256 |
9 | 512 |
10 | 1024 |
11 | 2048 |
12 | 4096 |
Point | Distance (m) | SNR (dB) | RSSI (dBm) |
---|---|---|---|
1 | 73 | 12 | −71 |
2 | 265 | 7 | −91 |
3 | 490 | −1 | −103 |
4 | 560 | −8 | −110 |
Point | Distance (m) | SNR (dB) | RSSI (dBm) |
---|---|---|---|
1 | 65 | 12 | −68 |
2 | 240 | 7 | −87 |
3 | 380 | 2 | −98 |
4 | 600 | −3 | −105 |
5 | 1100 | −13 | −113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, R.L.; Boulebnane, L.; Pagano, A.; Giuliano, F.; Croce, D. Towards Mass-Scale IoT with Energy-Autonomous LoRaWAN Sensor Nodes. Sensors 2024, 24, 4279. https://doi.org/10.3390/s24134279
Rosa RL, Boulebnane L, Pagano A, Giuliano F, Croce D. Towards Mass-Scale IoT with Energy-Autonomous LoRaWAN Sensor Nodes. Sensors. 2024; 24(13):4279. https://doi.org/10.3390/s24134279
Chicago/Turabian StyleRosa, Roberto La, Lokman Boulebnane, Antonino Pagano, Fabrizio Giuliano, and Daniele Croce. 2024. "Towards Mass-Scale IoT with Energy-Autonomous LoRaWAN Sensor Nodes" Sensors 24, no. 13: 4279. https://doi.org/10.3390/s24134279
APA StyleRosa, R. L., Boulebnane, L., Pagano, A., Giuliano, F., & Croce, D. (2024). Towards Mass-Scale IoT with Energy-Autonomous LoRaWAN Sensor Nodes. Sensors, 24(13), 4279. https://doi.org/10.3390/s24134279