Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions
Abstract
:1. Introduction
- (a)
- If power consumption is lower than harvested power, EH can completely replace battery power. In this case, the sensor node may operate continuously and EH completely replaces the use of battery power, as illustrated in Figure 3a.
- (b)
Organization of This Review
2. Investigation and Implementation of Ultra-Low-Power Design Technique (ULPDT) Applied for EHWSN
2.1. Operation States and Consumption Levels of a Typical Sensor Node
2.2. Identifying Sources of Power Dissipation in Circuits
Dynamic Power Reduction Approach
2.3. Static Power Reduction Techniques
2.4. Software and System-Level Optimizations
2.5. Logic and Architecture-Level Optimizations
3. Exploring Efficient Wireless Protocols for Low Power Connectivity: A Comparative Analysis
3.1. Energy Saving Protocol (ESP) for EHWSN
3.1.1. Bluetooth
3.1.2. Ultra-Wideband (UWB)
3.1.3. Wi-Fi (Wireless Fidelity)
3.1.4. ZigBee
3.1.5. Z-Wave
3.1.6. IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)
3.1.7. LoRaWAN (Long-Range Low-Power Wide Area Network)
3.1.8. SigFox
3.1.9. Narrowband Internet of Things (NB-IoT)
3.1.10. 2G, 3G, 4G LTE, and 5G Networks
3.1.11. Satellite Communication and Integration of Low Earth Orbit (LEO) Satellite with 5G
4. Optimizing Energy Efficiency: Key Concepts for Power Management Unit
4.1. Mechanisms Proposed for Managing the Dynamics of EH: Energy-Neutral, Power-Neutral, and Intermittent Computing
4.2. Maximizing Energy Efficiency: General Concept for PMU
5. Maximizing Sustainability and Reliability with Efficient Energy Storage Solutions
5.1. Battery Options: Non-Rechargeable vs. Rechargeable
5.2. Maximizing Efficiency: The Role of Capacitors and Supercapacitors in Energy Storage
5.2.1. Capacitors
5.2.2. Supercapacitors
5.3. New Trends in Energy Storage
5.3.1. Metal–Air Batteries (MABs)
5.3.2. Thin Film Batteries (TFBs)
6. Enhancing WSN Performance through Energy Harvesting Techniques (EHT)
6.1. Radiant Energy
6.1.1. Solar Cell EH-WSN
6.1.2. Evolution of SCs: From First to Third Generation
6.1.3. Challenges and Future Directions for Emerging SCs Technologies
6.2. Radio Frequency (RF)-EHWSN
Challenges and Future Directions for Emerging RF-EHWSN Technologies
6.3. Infrared-Frequency Rectifying Antenna
Material | Cut-Off Frequency | Thickness | JON | Asym | NL | S (V−1) | Zero Bias S (V−1) |
---|---|---|---|---|---|---|---|
Cu (100 nm)-CuO-Au (100 nm) (0.0045 μm2) [199] | 28.3 THz | CuO (0.7 nm) Au/Cu (100 nm) | - | - | - | 6 | 4 |
Ti-TiO2-Al (21,287 µm2) [205,206,207,208] | Up to 150 THz | TiO2 (9 nm) | 10−1 A/cm2 | - | 6.5 | 18 | - |
Ti-TiO2-Pt (21,287 µm2) [205,206,207,208] | Up to 150 THz | TiO2 (9 nm) | 10−0 A/cm2 | - | 15 | 15 | - |
Nb/Nb2O5/Pt [205,206] | Up to 150 THz | Nb2O5 (15 nm) | - | 1500 | 4 | 20 | - |
Nb/Nb2O5/Cu [205,206]] | Up to 150 THz | Nb2O5 (15 nm) | - | 1500 | 8 | 20 | - |
Nb/Nb2O5/Ag [205,206] | Up to 150 THz | Nb2O5 (15 nm) | - | 1500 | 8 | 20 | - |
Nb/Nb2O5/Au [205,206] | Up to 150 THz | Nb2O5 (15 nm) | - | 1500 | 8 | 20 | - |
Au/Al2O3/Pt [205,206,207,208,209,210] | Up to 28.3 THz | Al2O3 (1.4 nm) Au/Pt (100 nm) | - | - | 6 | - | 10 |
Ni-NiO-Ag (3.1 × 10−4 µm2) [211] | Up to 343 THz | NiO (6 nm) | - | 5 | 3 | 8.5 | 5.8 |
Pt-SiCl3-(CH2)17-CH3 -Ti (100 μm2) [212] | Up to 150 THz | SiCl3-(CH2)17-CH3 (2.23 nm) | - | 117.8 | 6.8 | 20.8 | 8.0 |
Nb/TiO2/Pt [213] | Up to 30 THz | TiO2 (13 nm) | - | 80 | 3.5 | - | - |
Nb/Nb2O5/Ni [213] | Up to 150 THz | Nb2O5 (15 nm) Nb/Ni (90–100 nm) | 1 × 10−10 A/cm2 | 396.5 | 7.1 | 8.5 | - |
Nb/Nb2O5 (15 nm)/Au [214] | Up to 150 THz | Nb2O5 (15 nm) Nb/Au (90–100 nm) | - | 1430.8 | 8.0 | 7.0 | - |
SrTiO3 (STO)/Al2O3/SrTiO3 (STO) [215] | Up to RF | - | 5 × 10−9 A/cm2 | - | - | - | - |
Cu-CuO-Cu (2 × 2 μm2) [216] | Up to 150 THz | CuO (2 nm) Cu (100 nm) | - | - | - | 4.497 | - |
Pt/Al2O3/Al [217] | Up to 150 THz | Al2O3 (6 nm) Pt/Al (100 nm) | - | 110 for AP-CVD 30 for PEALD | 6 for AP-CVD 30 for PEALD | 9 for AP-CVD 22 for PEALD | - |
Al-Al2O3-Au [218] | Up to 60 THz | Al/Au (65 nm) | 4.0 μA/cm2 | - | - | 14.46 | - |
Al-Al2O3-Cr [219] | Up to 28.3 THz | Al2O3 (3 nm) Al/Cr (100 nm) | 2 × 10−4 A/cm2 | - | 3.1 | - | - |
Material | Cut-Off Frequency | JON | Asym | NL | S (V−1) | Zero Bias S (V−1) | Resistance |
---|---|---|---|---|---|---|---|
W/Nb2O5 (3 nm)/Ta2O5 (1 nm)/W [221] W/Nb2O5 (1 nm)/Ta2O5 (1 nm)/W [221] | Up to 150 THz | - - | - - | - - | 11 11 | - - | - - |
Cr (60 nm)/TiO2 (1.5 nm)/Al2O3 (1.5 nm)/Ti (60 nm) [222] Cr (60 nm)/TiO2 (0.75 nm)/Al2O3 (0.75 nm)/TiO2 (0.75 nm)/Al2O3 (0.75 nm)/Ti (60 nm) [222] | Up to 150 THz | - - | - - | 6 7 | 3 90 | - - | - - |
Al (60 nm)/Ta2O5 (3–6 nm)/Al2O3 (1 nm)/Al (60 nm) [223] Al (60 nm)/Nb2O5 (3–6 nm)/Al2O3 (1 nm)/Al (60 nm) [223] | Up to 150 THz | 102A/m2 | 18 | 7.5 | 9 | - | - |
Co/Co3O4 (1.1 nm)/TiO2 (1.05 nm)/Ti [224] | Up to 30 THz | 105 A/cm2 | - | - | 4.4 | 2.2 | 18 KΩ |
Ti/TiO2 (1 nm)/ZnO (0.5 nm)/Al [225] | Up to 17.4 THz | - | - | - | 5.1 | 1.6 | 312 Ω |
Cr/Cr2O3 (2 nm)/HfO2 (2 nm)/Al2O3 (2 nm)/Cr [224,225,226] Cr/Cr2O3 (2 nm)/Al2O3 (2 nm)/HfO2 (2 nm)/Cr [226] | Up to 30 THz | - - | 5 4 | 4 5 | - - | - - | - - |
Pt (70 nm)/TiO2 (2 nm)/TiO1.4 (0.6 nm)/Ti (50 nm) [219] | Up to 30 THz | 4.2 × 106 A/m2 | 7.3 | - | - | - | - |
Cr (100 nm)/Cr2O3 (3 nm)/Al2O3 (3 nm)/Ag (100 nm) [227] | Up to 30 THz | 3 mA/cm2 | >280 | - | - | - | - |
Cr (100 nm)/Al2O3 (2 nm)/HfO2 (2 nm)/Cr [228] | Up to 30 THz | 70 µA/cm2 | 9 | 10 | 4.8 | - | - |
ZCAN (ZrCuAlNi 150 nm)/HfO2 (5 nm)/Al2O3 (3 nm)/Al (150 nm) [229] | Up to 30 THz | - | >10 | >5 | - | - | - |
Pt (150 nm)/HfO2 (1.5 nm)/TiO2 (1.5 nm)/Ti (150 nm) [230,231] | Up to 30 THz | - | 10 | >5.5 | 2 × 104 | - | 0.1 MΩ |
Pt (150 nm)/Al2O3 (1.5 nm)/TiO2 (1.5 nm)/Ti (150 nm) [230,231] | Up to 30 THz | - | 17 | >5.5 | 2 × 104 | - | 0.1 MΩ |
Ni (150 nm)/NiO (1.5 nm)/ZnO (1.5 nm)/Cr (150 nm) [232] | Up to 30 THz | - | 16 | - | - | - | - |
6.3.1. Challenges and Future Directions in the Field of Antennas
6.3.2. Challenges and Future Directions in the Field of THz Diode
6.3.3. Implementing Machine Learning in Emerging EHT
6.3.4. Hybrid Energy Harvesting
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ES | Energy Storage |
ULPDT | Ultra-Low-Power Design Techniques |
EHT | Energy Harvesting Technique |
PMU | Power Management Unit |
IoT | Internet of Things |
ULP WCP | Ultra-Low Power Wireless Communication Protocol |
WSN | Wireless Sensor Network |
DC | Direct Current |
DVS | Dynamic Voltage Scaling |
DFS | Dynamic Frequency Scaling |
RBB | Reverse Body Biasing |
DT | Direct Tunneling |
FNT | Fowler–Nordheim Tunneling |
EMI | Electromagnetic Interference |
ESP | Energy Saving Protocol |
ITA NTP | Integrating Terrestrial and Non-Terrestrial Protocols |
QAM | Quadrature amplitude modulation |
UL/DL MIMO | Uplink/Downlink MIMO |
OFDMA | Orthogonal frequency-division multiple access |
BPSK/OQPSK | Binary Phase Shift Keying/Offset Quadrature Phase Shift Keying |
WPANs | Wireless Personal Area Networks |
6LoWPAN | IPv6 over Low-Power Wireless Personal Area Networks |
LoRaWAN | Long Range Low Power Wide Area Network |
CSS | Chirp Spread Spectrum |
NB-IoT | Narrowband Internet of Things |
LPWAN | Low Power Wide Area Network |
GSM | Global System for Mobile Communications |
WCDMA | Wideband Code Division Multiple Access |
TDMA | Time Division Multiple Access |
LTE | Long Term Evolution |
GPIO | General-Purpose Input and Output Device |
DAC | Digital-to-Analog Converter |
MPPC/MPPT | Maximum Power Point Control/Tracking |
MnO2Li | Manganese dioxide lithium |
MnO2 | Manganese Dioxide |
LiSOCl2 | Lithium Thionyl Chloride |
LiO2S | Lithium sulfite |
NiCd | Nickel-Cadmium |
NiMH | Nickel-metal hydride |
Li-Ion | Lithium-ion |
EDLCs | Electric Double-Layer Capacitors |
PCs | Pseudo Capacitors |
HSCs | Hybrid Supercapacitors |
MAB | Metal–air batteries |
Li | Lithium |
Na | Sodium |
K | Potassium |
ƞ | Efficiency |
Voc | Open-Circuit Voltage |
Isc | Short-Circuit Current |
FF | Fill Factor |
Pmax | Maximum Power Point |
Vmpp | Voltage at Maximum Power |
Impp | Current at Maximum Power |
Rsh | Shunt Resistance |
Rs | Series Resistance |
c-Si | Single-crystalline silicon |
mc-Si | microcrystalline Silicon |
tf-Si | Thin-film silicon |
a-Si | Amorphous silicon |
MIG | Metal–insulator–graphene |
IRA | Infrared-frequency Rectifying Antenna |
IPA | Isopropyl Alcohol |
SEM | Scanning Electron Microscope |
GGD | Graphene-based geometric diodes |
TEG | Thermoelectric energy generators |
ML | Machine Learning |
EHWSN | Energy Harvesting Wireless Sensor Network |
EH | Energy Harvesting |
TX | Transmitter |
RX | Receiver |
PMOS | Positive-Channel Metal-Oxide Semiconductor |
NMOS | Negative-Channel Metal-Oxide Semiconductor |
CMOS | Complementary Metal-Oxide-Semiconductor |
DIBL | Drain-Induced Barrier Lowering |
BLE | Bluetooth Low Energy |
LE | Low Energy |
BR/EDR | Bluetooth Basic Rate/Enhanced Data Rate |
UWB | Ultra-Wideband |
Wi-Fi | Wireless Fidelity |
LANs | Local Area Networks |
DSSS | Direct Sequence Spread Spectrum |
MIMO-OFDM | Multiple-input, multiple-output orthogonal frequency-division multiplexing |
LOS | Line-Of-Sight |
CSMA/CA | Carrier Sense Multiple Access with Collision Avoidance |
FSK | Frequency-Shift Keying |
GFSK | Gaussian Frequency Shift Keying |
RF | Radio Frequency |
BDMA | Big Data Management and Analytics |
PSTN | Public Switched Telephone Network |
GEO | Geostationary Satellites Orbit |
LEO | Low Earth Orbit |
ENO | Energy-neutral operation |
PNO | Power-neutral operation |
IC | Intermittent computing |
ULPMU | Ultra-low power management unit |
IR | Infrared |
ADC | Analog-to-Digital Converter |
Mg | Magnesium |
Al | Aluminum |
Fe | Iron |
Zn | Zinc |
Al–air | Aluminum–air |
Ca–air | Calcium–air |
Mg–air | Magnesium–air |
Fe–air | Iron–air |
Li–air | Lithium–air |
Zn–air | Zinc–air |
TFBs | Thin-film batteries |
SC | Solar Cell |
PVE | Photovoltaic Effect |
Eg | bandgap |
AC | Alternating Current |
MCU | Microcontroller Unit |
EMW | Electromagnetic Wave |
SPPs | Surface plasmon polaritons |
LPF | Low-Pass Filter |
MIM | Metal-insulator-metal |
MInM | Metal Multi-Insulator Metal, n represents the number of ultrathin insulator layers |
FOM | Figures of Merit |
Asym | Asymmetry |
NL | nonlinearity |
S | Responsivity |
TOV | Turn-on Voltage |
ZBR | Zero-Bias Resistance |
ALD | Atomic Layer Deposition |
S&Q | Shockley–Queisser |
EBL | Electronic Beam Layer |
MIBK | Methyl Isobutyl ketone |
ANN | Artificial Neural Networks |
HEH | Hybrid Energy Harvesting |
RFID | Radio-Frequency Identification |
UHF | Ultra-high frequency |
References
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- IRIS, Memsic, Inc. Available online: http://www.memsic.com/wireless-sensor-networks/XM2110CA (accessed on 15 February 2015).
- MicaZ, Memsic, Inc. Available online: http://www.memsic.com/wireless-sensor-networks/MPR2400CB (accessed on 30 January 2015).
- iMote2, Intel Research. Available online: http://tinyos.stanford.edu/tinyos-wiki/index.php/Imote2 (accessed on 30 January 2015).
- SunSpot, Sunsystems. Available online: http://www.sunspotworld.com/ (accessed on 30 January 2015).
- Waspmote, Libelium Inc. Available online: http://www.libelium.com/products/waspmote/ (accessed on 30 January 2015).
- WiSMote, Aragosystems. Available online: http://www.aragosystems.com/en/wisnet-item/wisnet-wismote-item.html (accessed on 15 February 2015).
- Vullers, R.J.M.; van Schaijk, R.; Doms, I.; Van Hoof, C.; Mertens, R. Micropower energy harvesting. Solid State Electron. 2009, 53, 684–693. [Google Scholar] [CrossRef]
- Pecunia, V.; Silva, S.R.P.; Phillips, J.D.; Artegiani, E.; Romeo, A.; Shim, H.; Park, J.; Kim, J.H.; Yun, J.S.; Welch, G.C.; et al. Roadmap on energy harvesting materials. J. Phys. Mater. 2023, 6, 042501. [Google Scholar] [CrossRef] [PubMed]
- Elahi, H.; Munir, K.; Eugeni, M.; Atek, S.; Gaudenzi, P. Energy Harvesting towards Self-Powered IoT Devices. Energies 2020, 13, 5528. [Google Scholar] [CrossRef]
- Russo, J.; Ray, W., II; Litz, M.S. Low light illumination study on commercially available homojunction photovoltaic cells. Appl. Energy 2017, 191, 10–21. [Google Scholar] [CrossRef]
- De Rossi, F.; Pontecorvo, T.; Brown, T.M. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy 2015, 156, 413–422. [Google Scholar] [CrossRef]
- Visser, H.J.; Reniers, A.C.; Theeuwes, J.A. Ambient RF energy scavenging GSM and WLAN power density measurements. In Proceedings of the 2008 38th European Microwave Conference, Amsterdam, The Netherlands, 27–31 October 2008; pp. 721–724. [Google Scholar]
- Mazunga, F.; Nechibvute, A. Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues. Sci. Afr. 2021, 11, e00720. [Google Scholar] [CrossRef]
- Shanawani, M.; Masotti, D.; Costanzo, A. THz Rectennas and Their Design Rules. Electronics 2017, 6, 99. [Google Scholar] [CrossRef]
- Harb, A. Energy harvesting State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Sanislav, T.; Mois, G.D.; Zeadally, S.; Folea, S.C. Energy Harvesting Techniques for Internet of Things (IoT). IEEE Access 2021, 9, 39530–39549. [Google Scholar] [CrossRef]
- Rawat, S.; Das, S. A Review of Existing Techniques for Reducing Power Consumption in VLSI Circuits. Int. J. Emerg. Technol. 2017, 8, 141–143. [Google Scholar]
- Rabaey, J.; Pedram, M. Low Power Design Methodologies; Kluwer: Alphen aan den Rijn, The Netherlands, 1996. [Google Scholar]
- Chandrakasan, A.; Brodersen, R. Low-Power CMOS Design; IEEE Press: New York, NY, USA, 1998. [Google Scholar]
- Chandrakasan, A.P.; Sheng, S.; Brodersen, R.W. Low-Power CMOS Digital Design. IEEE J. Solid-State Circuits 1992, 27, 473–484. [Google Scholar] [CrossRef]
- Najm, F. A Survey of Power Estimation Techniques in VLSI Circuits. IEEE Trans. VLSI Syst. 1994, 2, 446–455. [Google Scholar] [CrossRef]
- Pedram, M. Power Estimation and Optimization at the Logic Level. Int. J. High Speed Electron. Syst. 1994, 5, 179–202. [Google Scholar] [CrossRef]
- Macii, E.; Pedram, M.; Somenzi, F. High-Level Power Modeling, Estimation, and Optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1998, 17, 1061–1079. [Google Scholar] [CrossRef]
- Borkar, S. Design Challenges of Technology Scaling. IEEE Micro 1999, 19, 23–29. [Google Scholar] [CrossRef]
- Thompson, S.; Packan, P.; Bohr, M. MOS Scaling: Transistor Challenges for the 21st Century. Intel. Technol. J. 1998, 398, 1–19. [Google Scholar]
- Chen, Z.; Shott, J.; Plummer, J. CMOS Technology Scaling for Low Voltage Low Power Applications. In Proceedings of the ISLPE-98: IEEE International Symposium on Low Power Electronics, San Diego, CA, USA, 10–12 October 1994; pp. 56–57. [Google Scholar]
- Ye, Y.; Borkar, S.; De, V. A New Technique for Standby Leakage Reduction in High-Performance Circuits. In Proceedings of the 1998 Symposium on VLSI Circuits, Honolulu, HI, USA, 11–13 June 1998; pp. 40–41. [Google Scholar]
- Pedram, M. Power Minimization in IC Design: Principles and Applications. ACM Trans. Des. Autom. Electron. Syst. 1996, 1, 3–56. [Google Scholar] [CrossRef]
- Chen, B.; Nedelchev, I. Power Compiler: A Gate Level Power Optimization and Synthesis System. In Proceedings of the ICCD’97: IEEE International Conference on Computer Design, Austin, TX, USA, 12–15 October 1997; pp. 74–79. [Google Scholar]
- Benini, L.; Bogliolo, A.; De Micheli, G. A Survey of Design Techniques for System-Level Dynamic Power Management. IEEE Trans. VLSI Syst. 2000, 8, 299–316. [Google Scholar] [CrossRef]
- Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H. Leakage Current Mechanisms and Leakage Reduction Techniques in Deep- Submicrometer CMOS Circuits. Proc. IEEE 2003, 91, 305–327. [Google Scholar] [CrossRef]
- Chandrakasan, A.P.; Brodersen, R.W. Minimizing Power Consumption in Digital CMOS Circuits. Proc. IEEE 1995, 83, 498–523. [Google Scholar] [CrossRef]
- Gu, R.X.; Elmasry, M.I. Power Dissipation Analysis and Optimization of Deep Submicron CMOS Digital Circuits. IEEE J. Solid-State Circuits 1996, 31, 707–713. [Google Scholar] [CrossRef]
- Wang, A.; Calhoun, B.; Chandrakasan, A.P. Sub-Threshold Design for Ultra-Low-Power Systems; Springer: New York, NY, USA, 2006; 209p. [Google Scholar]
- Butzen, P.F.; Ribas, R.P. Leakage reduction technique for CMOS complex gates. In Proceedings of the South Symposium on Microelectronics, Novo Hamburgo, Brazil, 25–27 April 2006; pp. 111–114. [Google Scholar]
- Kim, C.H.; Roy, K. Dynamic Vth Scaling Scheme for Active Leakage Power Reduction. In Proceedings of the 2002 Design Automation and Test in Europe Conference, Paris, France, 4–8 March 2002; pp. 163–167. [Google Scholar]
- Rao, R.; Srivastava, A.; Blaauw, D.; Sylvester, D. Statistical Analysis of Subthreshold Leakage Current for VLSI Circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2004, 12, 131–139. [Google Scholar] [CrossRef]
- Lorenzo, R.; Chaudhury, S. Review of Circuit Level Leakage Minimization Techniques in CMOS VLSI Circuits. IETE Tech. Rev. 2016, 34, 165–187. [Google Scholar] [CrossRef]
- Tsang, T.K.; El-gamal, N.M.; Iniewski, K.; Townsend, K.A.; Haslett, J.W.; Wang, Y. Current Status of CMOS Low Voltage and Low Power Wireless IC Designs. Analog. Integr. Circuits Signal Process. 2007, 53, 9–18. [Google Scholar] [CrossRef]
- Cheng, J.M.; Pedram, M. Energy Minimization using Multi Supply Voltage. IEEE Trans. VLSI Syst. 1992, 5, 436–443. [Google Scholar]
- Hanchate, N.; Ranganathan, N. A New Technique for Leakage Reduction in CMOS Circuits using Self-Controlled Stacked Transistors. In Proceedings of the 17th International Conference on VLSI Design (VLSID”04) IEEE, Mumbai, India, 5–9 January 2004. [Google Scholar]
- Sánchez-Álvarez, D.; Linaje, M.; Rodríguez-Pérez, F.-J. A Framework to Design the Computational Load Distribution of Wireless Sensor Networks in Power Consumption Constrained Environments. Sensors 2018, 18, 954. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Kovalenko, M.V.; Grillo, D.E.; Dupin, G.; Brunel, L.; Colliex, C. Interface Tunneling in Metal-Insulator-Metal Junctions. J. Phys. Rev. Lett. 2010, 104, 10. [Google Scholar]
- Morin, É.; Maman, M.; Guizzetti, R.; Duda, A. Comparison of the Device Lifetime in Wireless Networks for the Internet of Things. IEEE Access 2017, 5, 7097–7114. [Google Scholar] [CrossRef]
- Mansour, M.; Gamal, A.; Ahmed, A.I.; Said, L.A.; Elbaz, A.; Herencsar, N.; Soltan, A. Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions. Energies 2023, 16, 3465. [Google Scholar] [CrossRef]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466. [Google Scholar] [CrossRef] [PubMed]
- Dlodlo, N.; Kalezhi, J.; Dlodlo, N.; Kalezhi, J. The internet of things in agriculture for sustainable rural development. In Proceedings of the International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Windhoek, Namibia, 17–20 May 2015; pp. 13–18. [Google Scholar] [CrossRef]
- Lee, J.S.; Su, Y.W.; Shen, C.C. A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 46–51. [Google Scholar]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Heikkilä, M.; Suomalainen, J.; Saukko, O.; Kippola, T.; Lähetkangas, K.; Koskela, P.; Kalliovaara, J.; Haapala, H.; Pirttiniemi, J.; Yastrebova, A.; et al. Unmanned Agricultural Tractors in Private Mobile Networks. Network 2022, 2, 1–20. [Google Scholar] [CrossRef]
- Foubert, B.; Mitton, N. Long-Range Wireless Radio Technologies: A Survey. Future Internet 2020, 12, 13. [Google Scholar] [CrossRef]
- Hughes, L.; Wang, X.; Chen, T. A Review of Protocol Implementations and Energy Efficient Cross-Layer Design for Wireless Body Area Networks. Sensors 2012, 12, 14730–14773. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, L.; Kołakowski, R. Mobile Services for Smart Agriculture and Forestry, Biodiversity Monitoring, and Water Management: Challenges for 5G/6G Networks. Telecom 2023, 4, 67–99. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, S.; Hong, X.; Shi, J.; Cheng, L. Integration of Communication and Navigation Technologies toward LEO-Enabled 6G Networks: A Survey. Space Sci. Technol. 2023, 3, 0092. [Google Scholar] [CrossRef]
- Banafaa, M.; Shayea, I.; Din, J.; Azmi, M.H.; Alashbi, A.; Daradkeh, Y.I.; Alhammadi, A. 6G Mobile Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and Opportunities. Alex. Eng. J. 2023, 64, 245–274. [Google Scholar] [CrossRef]
- Barua, A.; Bhadra, G.P.; Rasel, M.S. A Universal Energy Harvesting System for Ultra-Low Power Management and IoT Applications. In Proceedings of the 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 18–20 November 2021; pp. 1–5. [Google Scholar]
- Lhermet, H.; Condemine, C.; Plissonnier, M.; Salot, R.; Audebert, P.; Rosset, M. Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Microbattery Energy Storage. IEEE J. Solid-State Circuits 2008, 43, 246–255. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, M.; Shirvanimoghaddam, K.; Abolhasani, M.M.; Farhangi, M.; Barsari, V.Z.; Liu, H.; Dohler, M.; Naebe, M.; Kara, G. Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting. IEEE Access 2019, 7, 94533–94556. [Google Scholar] [CrossRef]
- Vallem, V.; Sargolzaeiaval, Y.; Ozturk, M.; Lai, Y.C.; Dickey, M.D. Energy Harvesting and Storage with Soft and Stretchable Materials. Adv. Mater. 2021, 33, e2004832. [Google Scholar] [CrossRef] [PubMed]
- LTC3108. Available online: https://www.analog.com/en/products/ltc3108.html (accessed on 15 March 2024).
- LTC3105. Available online: https://www.analog.com/en/products/ltc3105.html (accessed on 15 March 2024).
- Pimentel, D.; Musilek, P. Power management with energy harvesting devices. In Proceedings of the CCECE 2010, Calgary, AB, Canada, 2–5 May 2010; pp. 1–4. [Google Scholar]
- Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 2007, 6, 32. [Google Scholar] [CrossRef]
- Rahimi, M.; Shah, H.; Sukhatme, G.S.; Heideman, J.; Estrin, D. Studying the feasibility of energy harvesting in a mobile sensor network. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 19–24. [Google Scholar]
- Abdin, Z.; Alim, M.A.; Saidur, R.; Islam, M.R.; Rashmi, W.; Mekhilef, S.; Wadi, A. Solar energy harvesting with the application of nanotechnology. Renew. Sustain. Energy Rev. 2013, 26, 837–852. [Google Scholar] [CrossRef]
- Wayu, M. Manganese Oxide Carbon-Based Nanocomposite in Energy Storage Applications. Solids 2021, 2, 232–248. [Google Scholar] [CrossRef]
- Nkembi, A.A.; Simonazzi, M.; Santoro, D.; Cova, P.; Delmonte, N. Comprehensive Review of Energy Storage Systems Characteristics and Models for Automotive Applications. Batteries 2024, 10, 88. [Google Scholar] [CrossRef]
- Hezekiah, J.D.K.; Ramya, K.C.; Radhakrishnan, S.B.K.; Kumarasamy, V.M.; Devendran, M.; Ramalingam, A.; Maheswar, R. Review of Next-Generation Wireless Devices with Self-Energy Harvesting for Sustainability Improvement. Energies 2023, 16, 5174. [Google Scholar] [CrossRef]
- Itani, K.; De Bernardinis, A. Review on New-Generation Batteries Technologies: Trends and Future Directions. Energies 2023, 16, 7530. [Google Scholar] [CrossRef]
- Johnson, M.; Healy, M.; van de Ven, P.; Hayes, M.J.; Nelson, J.; Newe, T.; Lewis, E. A comparative review of wireless sensor network mote technologies. In Proceedings of the SENSORS, 2009 IEEE, Christchurch, New Zealand, 25–28 October 2009; pp. 1439–1442. [Google Scholar]
- Pham, N.N.; Bloudicek, R.; Leuchter, J.; Rydlo, S.; Dong, Q.H. Comparative Analysis of Energy Storage and Buffer Units for Electric Military Vehicle: Survey of Experimental Results. Batteries 2024, 10, 43. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N. An overview of metal-air batteries, current progress, and future perspectives. J. Energy Storage 2022, 56, 106075. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, Y.L.; Cao, P.F.; Lin, M.C. Energy storage system: Current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 2017, 82, 3091–3106. [Google Scholar] [CrossRef]
- Taneja, J.; Jeong, J.; Culler, D. Design, modeling, and capacity planning for micro-solar power sensor networks. In Proceedings of the 7th International Conference on Information Processing in Sensor Networks, St. Louis, MO, USA, 22–24 April 2008; pp. 407–418. [Google Scholar]
- Yadav, G.G.; Wei, X.; Huang, J.; Turney, D.; Nyce, M.; Banerjee, S. Accessing the second electron capacity of MnO2 by exploring complexation and intercalation reactions in energy dense alkaline batteries. Int. J. Hydrog. Energy 2018, 43, 8480–8487. [Google Scholar] [CrossRef]
- Akinyele, D.; Rayudu, R. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Kaldellis, J.; Zafirakis, D. Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency. Energy 2007, 32, 2295–2305. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Mohamed, A.; Ayob, A. Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges. Renew. Sustain. Energy Rev. 2017, 69, 771–789. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Mahanta, C. An Overview of Battery Based Electric Vehicle Technologies with Emphasis on Energy Sources, Their Configuration Topologies and Management Strategies. IEEE Trans. Intell. Transp. Syst. 2024, 25, 1087–1111. [Google Scholar] [CrossRef]
- Beardsall, J.C.; Gould, C.A.; Al-Tai, M. Energy Storage Systems: A Review of the Technology and Its Application in Power Systems. In Proceedings of the 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 1–4 September 2015; pp. 1–6. [Google Scholar]
- Abbas, Q.; Mirzaeian, M.; Hunt, M.R.C.; Hall, P.; Raza, R. Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems. Energies 2020, 13, 5847. [Google Scholar] [CrossRef]
- Hylla, P.; Trawinski, T.; Polnik, B.; Burlikowski, W.; Prostanski, D. Overview of Hybrid Energy Storage Systems Combined with RES in Poland. Energies 2023, 16, 5792. [Google Scholar] [CrossRef]
- Sahin, M.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Rudra, S.; Seo, H.W.; Sarker, S.; Kim, D.M. Supercapatteries as Hybrid Electrochemical Energy Storage Devices: Current Status and Future Prospects. Molecules 2024, 29, 243. [Google Scholar] [CrossRef] [PubMed]
- Aftab, J.; Mehmood, S.; Ali, A.; Ahmad, I.; Bhopal, M.F.; Rehman, M.Z.U.; Shah, M.Z.U.; Shah, A.U.; Wang, M.; Khan, M.F.; et al. Synergetic electrochemical performance of tungsten oxide/tungsten disulfide/MWCNTs for high-performance aqueous asymmetric supercapattery devices. J. Alloys Compd. 2023, 965, 171366. [Google Scholar] [CrossRef]
- Khan, M.F.; Marwat, M.A.; Abdullah; Shah, S.S.; Karim, M.R.A.; Aziz, M.A.; Din, Z.U.; Ali, S.; Adam, K.M. Novel MoS2-sputtered NiCoMg MOFs for high-performance hybrid supercapacitor applications. Sep. Purif. Technol. 2023, 310, 123101. [Google Scholar]
- Raja, T.A.; Vickraman, P. Role of dual redox additives KI/VOSO4 in manganese ammonium phosphate at graphene quantum dots for supercapattery. Int. J. Energy Res. 2022, 46, 9097–9113. [Google Scholar] [CrossRef]
- Shehzad, W.; Karim, M.R.A.; Iqbal, M.Z.; Shahzad, N.; Ali, A. Sono-chemical assisted synthesis of carbon nanotubes-nickel phosphate nanocomposites with excellent energy density and cyclic stability for supercapattery applications. J. Energy Storage 2022, 54, 105231. [Google Scholar] [CrossRef]
- Ghanem, L.G.; Taha, M.M.; Salama, M.; Allam, N.K. Binder-free Mn-V-Sn oxyhydroxide decorated with metallic Sn as an earth-abundant supercapattery electrode for intensified energy storage. Sustain. Energy Fuels 2022, 6, 4787–4799. [Google Scholar] [CrossRef]
- Moradi, M.; Mousavi, M.; Pooriraj, M.; Babamoradi, M.; Hajati, S. Enhanced pseudocapacitive performance of two-dimensional Zn-metal organic framework through a post-synthetic amine functionalization. Thin Solid Film. 2022, 749, 139187. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Khan, J.; Afzal, A.M.; Aftab, S. Exploring the synergetic electrochemical performance of cobalt sulfide/cobalt phosphate composites for supercapattery devices with high-energy and rate capability. Electrochim. Acta 2021, 384, 138358. [Google Scholar] [CrossRef]
- Wu, H.; Qiu, Z. Fe3O4@N-porous carbon nano rice/rGO sheet as positive electrode material for a high performance supercapattery. J. Alloys Compd. 2021, 879, 160264. [Google Scholar] [CrossRef]
- Sharmila, V.; Packiaraj, R.; Nallamuthu, N.; Parthibavarman, M. Fabrication of MWCNTs wrapped nickel manganese phosphate asymmetric capacitor as a supercapattery electrode for energy storage applications. Inorg. Chem. Commun. 2020, 121, 108194. [Google Scholar] [CrossRef]
- Liu, G.; Xie, J.; Sun, Y.; Zhang, P.; Li, X.; Zheng, L.; Hao, L.; Shanmin, G. Constructing 3D honeycomb-like CoMn2O4 nanoarchitecture on nitrogen-doped graphene coating Ni foam as flexible battery-type electrodes for advanced supercapattery. Int. J. Hydrog. Energy 2021, 46, 36314–36322. [Google Scholar] [CrossRef]
- Murugan, C.; Subramani, K.; Subash, R.; Sathish, M.; Pandikumar, A. High-performance high-voltage symmetric supercapattery based on a graphitic carbon nitride/bismuth vanadate nanocomposite. Energy Fuels 2020, 34, 16858–16869. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, C.; Wang, F.; Gu, Y.; Zhang, P.; Waclawik, E.R.; Du, A.; Ostrikov, K.; Wang, H. A zinc bromine “supercapattery” system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Mater. Horiz. 2020, 7, 495–503. [Google Scholar] [CrossRef]
- Nadeem, F.; Hussain, S.M.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access 2019, 7, 4555–4585. [Google Scholar] [CrossRef]
- Neburchilov, V.; Zhang, J. Metal-Air and Metal-Sulfur Batteries; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Riaz, A.; Sarker, M.R.; Saad, M.H.M.; Mohamed, R. Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations. Sensors 2021, 21, 5041. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Chen, C.; Danilov, D.L.; Eichel, R.A.; Notten, P.H.L. All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs. Batteries 2023, 9, 186. [Google Scholar] [CrossRef]
- Kanamura, K.; Toriyama, S.; Shiraishi, S.; Takehara, Z. Studies on Electrochemical Oxidation of Nonaqueous Electrolytes Using In Situ FTIR Spectroscopy: I. The Effect of Type of Electrode on On-Set Potential for Electrochemical Oxidation of Propylene Carbonate Containing 1.0 mol dm−3. J. Electrochem. Soc. 1995, 142, 1383. [Google Scholar] [CrossRef]
- Huang, S.; Chen, Y.; Liu, Q. Electrochemical behavior and application of a silver electrode in a 1 M LiPF6 solution. J. Alloys Compd. 2018, 758, 1–4. [Google Scholar] [CrossRef]
- Gu, Y.; Federici, J.F. Fabrication of a Flexible Current Collector for Lithium Ion Batteries by Inkjet Printing. Batteries 2018, 4, 42. [Google Scholar] [CrossRef]
- Fredriksson, W.; Edström, K. XPS study of duplex stainless steel as a possible current collector in a Li-ion battery. Electrochim. Acta 2012, 79, 82–94. [Google Scholar] [CrossRef]
- Myung, S.-T.; Sasaki, Y.; Sakurada, S.; Sun, Y.-K.; Yashiro, H. Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochim. Acta 2009, 55, 288–297. [Google Scholar] [CrossRef]
- Gao, T.; Qu, Q.; Zhu, G.; Shi, Q.; Qian, F.; Shao, J.; Zheng, H. A self-supported carbon nanofiber paper/sulfur anode with high capacity and high-power for application in Li-ion batteries. Carbon 2016, 110, 249–256. [Google Scholar] [CrossRef]
- Adu-Manu, K.S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review. ACM Trans. Sens. Netw. 2018, 14, 1–50. [Google Scholar] [CrossRef]
- Akbari, S. Energy harvesting for wireless sensor networks review. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), Warsaw, Poland, 7–10 September 2014; pp. 987–992. [Google Scholar]
- Jiang, X.; Polastre, J.; Culler, D. Perpetual environmentally powered sensor networks. In Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN’05), Los Angeles, CA, USA, 25–27 April 2005; pp. 463–468. [Google Scholar]
- Peng, S.; Low, C.P. Energy-neutral routing for energy-harvesting wireless sensor networks. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013; pp. 2063–2067. [Google Scholar]
- Peng, S.; Wang, T.; Low, C.P. Energy-neutral clustering for energy-harvesting wireless sensors networks. Ad Hoc Netw. 2015, 28, 1–16. [Google Scholar] [CrossRef]
- Kanoun, O.; Bradai, S.; Khriji, S.; Bouattour, G.; El Houssaini, D.; Ben Ammar, M.; Naifar, S.; Bouhamed, A.; Derbel, F.; Viehweger, C. Energy-Aware System Design for Autonomous Wireless Sensor Nodes: A Comprehensive Review. Sensors 2021, 21, 548. [Google Scholar] [CrossRef] [PubMed]
- Al-Ezzi, A.S.; Ansari, M.N.M. Photovoltaic Solar Cells: A Review. Appl. Syst. Innov. 2022, 5, 67. [Google Scholar] [CrossRef]
- Kawamoto, H. Electrostatic cleaning equipment for dust removal from soiled solar panels. J. Electrostat. 2019, 98, 11–16. [Google Scholar] [CrossRef]
- Mahdi Elsiddig Haroun, F.; Mohamad Deros, S.N.; Ahmed Alkahtani, A.; Md Din, N. Towards Self-Powered WSN: The Design of Ultra-Low-Power Wireless Sensor Transmission Unit Based on Indoor Solar Energy Harvester. Electronics 2022, 11, 2077. [Google Scholar] [CrossRef]
- Dallaev, R.; Pisarenko, T.; Papež, N.; Holcman, V. Overview of the Current State of Flexible Solar Panels and Photovoltaic Materials. Materials 2023, 16, 5839. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, R.A. Advances in Solar Cell Technology: An Overview. J. Sci. Res. 2021, 65, 72–75. [Google Scholar] [CrossRef]
- Roy, S.; Baruah, M.S.; Sahu, S.; Nayak, B.B. Computational analysis on the thermal and mechanical properties of thin film solar cells. Mater. Today Proc. 2021, 44, 1207–1213. [Google Scholar] [CrossRef]
- Zekry, A.; Shaker, A.; Salem, M. Solar Cells and Arrays: Principles, Analysis, and Design; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1. [Google Scholar]
- Rouway, M.; Boulahia, Z.; Chakhchaoui, N.; Fouzia, F.; El Hachemi Omari, L.; Cherkaoui, O.; Van Langenhove, L. Mathematical and numerical modelling of soiling effects of photovoltaic solar panels on their electrical performance. IOP Conf. Ser. Mater. Sci. Eng. 2020, 827, 012064. [Google Scholar] [CrossRef]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- He, G.; Zhou, C.; Li, Z. Review of Self-Cleaning Method for Solar Cell Array. Procedia Eng. 2011, 16, 640–645. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Qarony, W.; Hossain, M.I.; Hossain, M.K.; Uddin, M.J.; Haque, A.; Saad, A.R.; Tsang, Y.H. Efficient amorphous silicon solar cells: Characterization, optimization, and optical loss analysis. Results Phys. 2017, 7, 4287–4293. [Google Scholar] [CrossRef]
- Almosni, S.; Delamarre, A.; Jehl, Z.; Suchet, D.; Cojocaru, L.; Giteau, M.; Behaghel, B.; Julian, A.; Ibrahim, C.; Tatry, L.; et al. Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci. Technol. Adv. Mater. 2018, 19, 336–369. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.L. The Physics of the Solar Cell. In Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 82–129. [Google Scholar]
- Shah, D.K.; KC, D.; Muddassir, M.; Akhtar, M.S.; Kim, C.Y.; Yang, O.B. A simulation approach for investigating the performances of cadmium telluride solar cells using doping concentrations, carrier lifetimes, thickness of layers, and band gaps. Sol. Energy 2021, 216, 259–265. [Google Scholar] [CrossRef]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Ramanujam, J.; Singh, U.P. Copper indium gallium selenide based solar cells—A review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Mufti, N.; Amrillah, T.; Taufiq, A.; Diantoro, M.; Nur, H. Review of CIGS-based solar cells manufacturing by structural engineering. Sol. Energy 2020, 207, 1146–1157. [Google Scholar] [CrossRef]
- Frenzel, M.; Mikolajczak, C.; Reuter, M.A.; Gutzmer, J. Quantifying the relative availability of high-tech by-product metals—The cases of gallium, germanium and indium. Resour. Policy 2017, 52, 327–335. [Google Scholar] [CrossRef]
- Gul, M.; Kotak, Y.; Muneer, T. Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 2016, 34, 485–526. [Google Scholar] [CrossRef]
- Papež, N.; Škvarenina, L.; Tofel, P.; Sobola, D. Thermal stability of gallium arsenide solar cells. In Proceedings of the Photonics, Devices, and Systems VII, Prague, Czech Republic, 28–30 August 2017; p. 27. [Google Scholar]
- Pouladi, S.; Asadirad, M.; Oh, S.K.; Shervin, S.; Chen, J.; Wang, W.; Manh, C.N.; Choi, R.; Kim, J.; Khatiwada, D.; et al. Effects of grain boundaries on conversion efficiencies of single-crystal-like GaAs thin-film solar cells on flexible metal tapes. Sol. Energy Mater. Sol. Cells 2019, 199, 122–128. [Google Scholar] [CrossRef]
- Park, S.; Simon, J.; Schulte, K.L.; Ptak, A.J.; Wi, J.S.; Young, D.L.; Oh, J. Germanium-on-Nothing for Epitaxial Liftoff of GaAs Solar Cells. Joule 2019, 3, 1782–1793. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Emery, K.; King, D.L.; Igari, S.; Warta, W. Solar cell efficiency tables (version 19). Prog. Photovolt. Res. Appl. 2002, 10, 55–61. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; King, D.L.; Igari, S.; Warta, W. Solar cell efficiency tables (version 22). Prog. Photovolt. Res. Appl. 2003, 11, 347–352. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; King, D.L.; Igari, S.; Warta, W. Solar cell efficiency tables (version 26). Prog. Photovolt. Res. Appl. 2005, 13, 387–392. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; King, D.L.; Igari, S.; Warta, W. Solar cell efficiency tables (version 27). Prog. Photovolt. Res. Appl. 2006, 14, 45–57. [Google Scholar] [CrossRef]
- Maziviero, F.V.; Melo, D.M.A.; Medeiros, R.L.B.A.; Oliveira, Â.A.S.; Macedo, H.P.; Braga, R.M.; Morgado, E., Jr. Advancements and Prospects in Perovskite Solar Cells: From Hybrid to All-Inorganic Materials. Nanomaterials 2024, 14, 332. [Google Scholar] [CrossRef] [PubMed]
- Bett, A.J.; Schulze, P.S.C.; Winkler, K.M.; Kabakli, Ö.S.; Ketterer, I.; Mundt, L.E.; Reichmuth, S.K.; Siefer, G.; Cojocaru, L.; Tutsch, L.; et al. Two-terminal Perovskite silicon tandem solar cells with a high-Bandgap Perovskite absorber enabling voltages over 1.8 V. Prog. Photovolt. 2020, 28, 99–110. [Google Scholar] [CrossRef]
- Chen, M.; Ju, M.G.; Garces, H.F.; Carl, A.D.; Ono, L.K.; Hawash, Z.; Zhang, Y.; Shen, T.; Qi, Y.; Grimm, R.L.; et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Stoumpos, K.; Cao, D.H.; Chang, R.P.H.; Kanatzidis, M. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494. [Google Scholar] [CrossRef]
- Bansode, U.; Naphade, R.; Game, O.; Agarkar, S.; Ogale, S. Hybrid perovskite films by a new variant of pulsed excimer laser deposition: A roomerature dry process. J. Phys. Chem. C 2015, 119, 9177–9185. [Google Scholar] [CrossRef]
- Shao, S.; Liu, J.; Portale, G.; Fang, H.H.; Blake, G.R.; ten Brink, G.H.; Koster, L.J.A.; Loi, M.A. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency. Adv. Energy Mater. 2018, 8, 1702019. [Google Scholar] [CrossRef]
- Jokar, E.; Chien, C.; Tsai, C.; Fathi, A.; Diau, E.W. Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Adv. Mater. 2018, 31, 1804835. [Google Scholar] [CrossRef] [PubMed]
- Zuo, F.; Williams, S.T.; Liang, P.W.; Chueh, C.C.; Liao, C.Y.; Jen, A.K.Y. Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2014, 26, 6454–6460. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.; Lee, B.; He, J.; Chang, R.P.H.; Kanatzidis, M.G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kang, D. Highly Efficient and Stable Sn-rich Perovskite Solar Cells by Introducing Bromine Highly Efficient and Stable Sn-rich Perovskite Solar Cells by Introducing Bromine. ACS Appl. Mater. Interfaces 2017, 9, 22432–22439. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, I.; Mangal, S.; Udai, P.S. Performance optimization of lead free-MASnI3/CIGS heterojunction solar cell with 28.7% efficiency: A numerical approach. Opt. Mater. 2021, 122, 111812. [Google Scholar] [CrossRef]
- Yang, Z.; Rajagopal, A.; Chueh, C.; Jo, S.B.; Liu, B.; Zhao, T.; Jen, A.K. Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells. Adv. Mater. 2016, 28, 8990–8997. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Leijtens, T.; Bush, K.A.; Prasanna, R.; Green, T.; Wang, J.; McMeekin, D.P.; Volonakis, G.; Milot, R.L.; May, R.; et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C.R.; Wang, C.; Xiao, Y.; Cimaroli, A.J.; Ellingson, R.J.; et al. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methyl ammonium Lead Iodide. J. Am. Chem. Soc. 2016, 138, 12360–12363. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.K.; Li, M.; Yang, Y.G.; Hu, Y.; Ma, H.; Gao, X.Y.; Liao, L.S. High Efficiency Pb–In Binary Metal Perovskite Solar Cells. Adv. Mater. 2016, 28, 6695–6703. [Google Scholar] [CrossRef] [PubMed]
- Fievez, M.; Rana, P.J.S.; Koh, T.M.; Manceau, M.; Lew, J.H.; Jamaludin, N.F.; Ghosh, B.; Bruno, A.; Cros, S.; Berson, S.; et al. Slot-die coated methyl ammonium-free perovskite solar cells with 18% efficiency. Sol. Energy Mater. Sol. Cells 2021, 230, 111–189. [Google Scholar] [CrossRef]
- Ramirez, I.; Zhang, J.; Ducati, C.; Grovenor, C.; Johnston, M.B.; Ginger, D.S.; Nicholas, J.; Snaith, H.J. Environmental Science. Energy Environ. Sci. 2016, 9, 2892–2901. [Google Scholar]
- Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N.; et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 2020, 5, 131–140. [Google Scholar] [CrossRef]
- Cacovich, S.; Vidon, G.; Degani, M.; Legrand, M.; Gouda, L.; Puel, J.; Vaynzof, Y.; Guillemoles, J.; Ory, D.; Grancini, G. Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 2022, 13, 2868. [Google Scholar] [CrossRef] [PubMed]
- Degani, M.; An, Q.; Albaladejo-Siguan, M.; Hofstetter, Y.J.; Cho, C.; Paulus, F.; Grancini, G.; Vaynzof, Y. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 2021, 7, eabj7930. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.J.; Yeom, K.M.; Kim, S.J.; Jung, E.H.; Noh, J.H. Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy Environ. Sci. 2021, 14, 2419–2428. [Google Scholar] [CrossRef]
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H.W.; Lee, J.; et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Guo, Q.; Xiu, J.; Ying, Z.; Ng, K.W.; Huang, L.; Wang, S.; Pan, H.; Tang, Z.; He, Z. Close-loop recycling of perovskite solar cells through dissolution-recrystallization of perovskite by butylamine. Cell Rep. Phys. Sci. 2021, 2, 100341. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Shriwastava, S.; Tripathi, C.C. Metal–Insulator–Metal Diodes: A Potential High Frequency Rectifier for Rectenna Application. J. Electron. Mater. 2019, 48, 2635–2652. [Google Scholar] [CrossRef]
- Luo, Y.; Pu, L.; Wang, G.; Zhao, Y. RF Energy Harvesting Wireless Communications: RF Environment, Device Hardware and Practical Issues. Sensors 2019, 19, 3010. [Google Scholar] [CrossRef] [PubMed]
- Piñuela, M.; Mitcheson, P.D.; Lucyszyn, S. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Tech. 2013, 61, 2715–2726. [Google Scholar] [CrossRef]
- Roy, S.; Tiang, J.J.; Roslee, M.B.; Ahmed, M.T.; Kouzani, A.Z.; Mahmud, M.A.P. Quad-Band Rectenna for Ambient Radio Frequency (RF) Energy Harvesting. Sensors 2021, 21, 7838. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Choi, S.; Kim, H.; Hwang, S.; Jeon, S.; Yoon, Y.-K. Metamaterial-Integrated High-Gain Rectenna for RF Sensing and Energy Harvesting Applications. Sensors 2021, 21, 6580. [Google Scholar] [CrossRef] [PubMed]
- Gasulla, M.; Ripoll-Vercellone, E.; Reverter, F. A Compact Thévenin Model for a Rectenna and Its Application to an RF Harvester with MPPT. Sensors 2019, 19, 1641. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, N.; Sun, H.; Ren, R. A Dual-Polarized Omnidirectional Rectenna Array for RF Energy Harvesting. Micromachines 2023, 14, 1071. [Google Scholar] [CrossRef] [PubMed]
- De Donno, D.; Catarinucci, L.; Tarricone, L. RAMSES: RFID Augmented Module for Smart Environmental Sensing. IEEE Trans. Instrum. Meas. 2014, 63, 1701–1708. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, S.; Kanaujia, B.K.; Beg, M.T.; Mainuddin; Kumar, S. A compact broadband GFET based rectenna for RF energy harvesting applications. Microsyst. Technol. 2020, 26, 1881–1888. [Google Scholar] [CrossRef]
- Koohestani, M.; Tissier, J.; Latrach, M. A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz. AEU Int. J. Electron. Commun. 2020, 127, 153478. [Google Scholar]
- Chi, Y.-J.; Lin, C.-H.; Chiu, C.-W. Design and modeling of a wearable textile rectenna array implemented on Cordura fabric for batteryless applications. J. Electromagn. Waves Appl. 2020, 34, 1782–1796. [Google Scholar] [CrossRef]
- Potti, D.; Mohammed, G.N.A.; Savarimuthu, K.; Narendhiran, S.; Rajamanickam, G. An ultra-wideband rectenna using optically transparent Vivaldi antenna for radio frequency energy harvesting. Int. J. RF Microw. Comput. Eng. 2020, 30, 1–12. [Google Scholar] [CrossRef]
- Pandey, R.; Shankhwar, A.K.; Singh, A.A. An Improved Conversion efficiency of 1.975 to 4.744 GHz Rectenna for Wireless Sensor Applications. Prog. Electromagn. Res. C 2021, 109, 217–225. [Google Scholar] [CrossRef]
- Fakharian, M.M. A Wideband Rectenna Using High Gain Fractal Planar Monopole Antenna Array for RF Energy Scavenging. Int. J. Antennas Propag. 2020, 2020, 3489323. [Google Scholar] [CrossRef]
- Eltresy, N.A.; Dardeer, O.M.; Al-Habal, A.; ElHariri, E.; Abotaleb, A.M.; Elsheakh, D.N.; Khattab, A.; Taie, S.A.; Mostafa, H.; Elsadek, H.A.; et al. Smart Home IoT System by Using RF Energy Harvesting. J. Sens. 2020, 2020, 8828479. [Google Scholar] [CrossRef]
- Benhamou, A.; Tellache, M.; Hebib, S.; Mahfoudi, H. A wide input power range rectenna for energy harvesting and wireless power transfer applications. Int. J. RF Microw. Comput. Eng. 2020, 30. [Google Scholar] [CrossRef]
- He, Z.; Liu, C. A Compact High-Efficiency Broadband Rectifier with a Wide Dynamic Range of Input Power for Energy Harvesting. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 433–436. [Google Scholar] [CrossRef]
- Reed, R.; Pour, F.L.; Ha, D.S. An Efficient 2.4 GHz Differential Rectenna for Radio Frequency Energy Harvesting. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 208–212. [Google Scholar]
- Hu, Y.-Y.; Sun, S.; Su, H.-J.; Yang, S.; Hu, J. Dual-Beam Rectenna Based on a Short Series-Coupled Patch Array. IEEE Trans. Antennas Propag. 2021, 69, 5617–5630. [Google Scholar] [CrossRef]
- Chandrasekaran, K.T.; Agarwal, K.; Alphones, A.; Mittra, R.; Karim, M.F. Compact Dual-Band Metamaterial-Based High-Efficiency Rectenna: An Application for Ambient Electromagnetic Energy Harvesting. IEEE Antennas Propag. Mag. 2020, 62, 18–29. [Google Scholar] [CrossRef]
- Almoneef, T.S. Design of a Rectenna Array without a Matching Network. IEEE Access 2020, 8, 109071–109079. [Google Scholar] [CrossRef]
- Lin, W.; Ziolkowski, R.W. Electrically Small, Single-Substrate Huygens Dipole Rectenna for Ultra-compact Wireless Power Transfer Applications. IEEE Trans. Antennas Propag. 2020, 69, 1130–1134. [Google Scholar] [CrossRef]
- Wagih, M.; Hilton, G.S.; Weddell, A.S.; Beeby, S. Broadband Millimeter-Wave Textile-Based Flexible Rectenna for Wearable Energy Harvesting. IEEE Trans. Microw. Theory Tech. 2020, 68, 4960–4972. [Google Scholar] [CrossRef]
- Wagih, M.; Hillier, N.; Yong, S.; Weddell, A.S.; Beeby, S. RF-Powered Wearable Energy Harvesting and Storage Module Based on E-Textile Coplanar Waveguide Rectenna and Supercapacitor. IEEE Open J. Antennas Propag. 2021, 2, 302–314. [Google Scholar] [CrossRef]
- Wagih, M.; Hilton, G.S.; Weddell, A.S.; Beeby, S. Dual-Band Dual-Mode Textile Antenna/Rectenna for Simultaneous Wireless Information and Power Transfer (SWIPT). IEEE Trans. Antennas Propag. 2021, 69, 6322–6332. [Google Scholar] [CrossRef]
- Citroni, R.; Di Paolo, F.; Livreri, P. Evaluation of an optical energy harvester for SHM application. Int. J. Electron. Commun. (AEÜ) 2019, 111, 152918. [Google Scholar] [CrossRef]
- Citroni, R.; Di Paolo, F.; Livreri, P. A Novel Energy Harvester for Powering Small UAVs: Performance Analysis, Model Validation and Flight Results. Sensors 2019, 19, 1771. [Google Scholar] [CrossRef] [PubMed]
- Citroni, R.; Leggieri, A.; Passi, D.; Di Paolo, F.; Di Carlo, A. Nano Energy Harvesting with Plasmonic Nano-Antennas: A review of MID-IR Rectenna and Application. Adv. Electromagn. 2017, 6, 1. [Google Scholar] [CrossRef]
- Citroni, R.; Passi, D.; Leggieri, A.; Di Paolo, F.; Di Carlo, A. The next generation: Miniaturized objects, self-powered using nanostructures to harvest ambient energy. In Proceedings of the 18th Italian National Conference on Photonic Technologies (Fotonica 2016), Rome, Italy, 6–8 June 2016; pp. 1–4. [Google Scholar]
- Byrness, S.J.; Blanchard, R.; Capasso, F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proc. Natl. Acad. Sci. USA 2014, 111, 3927–3932. [Google Scholar] [CrossRef] [PubMed]
- Donchev, E.; Pang, J.S.; Gammon, P.M.; Centeno, A.; Xie, F.; Petrov, P.K.; Breeze, J.D.; Ryan, M.P.; Riley, D.J.; Alford, N.M. The rectenna device: From theory to practice (a review). MRS Energy Sustain. Rev. J. 2014, 1, E1. [Google Scholar]
- Gadalla, M.N.; Abdel-Rahman, M.; Shamim, A. Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci. Rep. 2014, 4, 4270. [Google Scholar] [CrossRef] [PubMed]
- Davids, P.S.; Jarecki, R.L.; Starbuck, A.; Burckel, D.B.; Kadlec, E.A.; Ribaudo, T.; Shaner, E.A.; Peters, D.W. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode. Nat. Nanotechnol. 2015, 10, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Belkadi, A.; Weerakkody, A.; Moddel, G. Demonstration of resonant tunneling effects in metal-double-insulator-metal (MI2M) diodes. Nat. Commun. 2021, 12, 2925. [Google Scholar] [CrossRef] [PubMed]
- Hamied, F.M.A.; Mahmoud, K.R.; Hussein, M.; Obayya, S.A.A. Design and analysis of a nano-rectenna based on multi-insulator tunnel barrier for solar energy harvesting. Opt. Quant. Electron. 2022, 54, 144. [Google Scholar] [CrossRef]
- Moddel, G.; Grover, S. Rectenna Solar Cells; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Chien Chiu, F. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef]
- Khan, A.A.; Jayaswal, G.; Gahaffar, F.A.; Shamim, A. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectron. Eng. 2017, 181, 34–42. [Google Scholar] [CrossRef]
- Periasamy, P.; Gathers, H.L.; Abdulagatov, A.I.; Ndione, P.F.; Berry, J.J.; Ginley, D.S.; George, S.M.; Parilla, P.A.; O’Hayre, R.P. Metal–Insulator–Metal Diodes: Role of the Insulator Layer on the Rectification Performance. Adv. Mater. 2013, 25, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Citroni, R.; Di Paolo, F.; Di Carlo, A. Replacing Noble Metals with Alternative Metals in MID-IR Frequency: A Theoretical Approach. AIP Conf. Proc. 2018, 1990, 020004. [Google Scholar]
- Rawal, Y.; Ganguly, S.; Baghini, M.S. Fabrication and Characterization of New Ti-TiO2-Al and Ti-TiO2-Pt Tunnel Diodes. Act. Passiv. Electron. Compon. 2012, 2012, 694105. [Google Scholar] [CrossRef]
- Periasamy, P.; Berry, J.J.; Dameron, A.A.; Bergeson, J.D.; Ginley, D.S.; O’Hayre, R.P.; Parilla, P.A. Fabrication and Characterization of MIM Diodes Based on Nb/Nb2O5 via a Rapid Screening Technique. Adv. Mater. 2011, 23, 3080–3085. [Google Scholar] [CrossRef] [PubMed]
- Gadalla, M.N.; Shamim, A. 28.3 THz Bowtie Antenna Integrated Rectifier for Infrared Energy Harvesting. In Proceedings of the 2014 44th European Microwave Conference, Rome, Italy, 6–9 October 2014; pp. 652–655. [Google Scholar]
- Grover, S.; Dmitriyeva, O.; Estes, M.J.; Moddel, G. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotechn. 2010, 9, 716–722. [Google Scholar] [CrossRef]
- Jin, J.; Wang, L.; Zheng, Z.; Zhang, J.; Hu, X.; Lu, J.R.; Etor, D.; Pearson, C.; Song, A.; Wood, D.; et al. Metal-insulator-metal diodes based on alkyltrichlorosilane self-assembled monolayers. AIP Adv. 2019, 9, 065017. [Google Scholar] [CrossRef]
- China, M.L.; Periasamy, P.; O’Regan, T.P.; Amani, M.; Tan, C.; O’Hayre, R.P.; Berry, J.J.; Osgood, R.M.; Parilla, P.A.; Ginley, D.S.; et al. Planar Metal-Insulator-Metal Diodes Based on the Nb/Nb2O5/X Material System. J. Vac. Sci. Technol. 2013, 31, 051204. [Google Scholar] [CrossRef]
- Lee, J.H.; Lin, Y.C.; Chen, B.H.; Tsai, C.Y. New metal-insulator-metal capacitor based on SrTiO3/Al2O3/SrTiO3 laminate dielectric. In Proceedings of the 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, 1–4 November 2010; pp. 1024–1026. [Google Scholar]
- Abdel-Rahman, M.; Syaryadhi, M.; Debbar, N. Fabrication and characterization of high sensitivity copper-copper oxide-copper (Cu-CuO-Cu) metal-insulator-metal tunnel junctions. Electron. Lett. 2013, 49, 363–364. [Google Scholar] [CrossRef]
- Alshehri, A.H.; Mistry, K.; Nguyen, V.H.; Ibrahim, K.H.; Muñoz-Rojas, D.; Yavuz, M.; Musselman, K.P. Quantum-Tunneling Metal-Insulator-Metal Diodes Made by Rapid Atmospheric Pressure Chemical Vapor Deposition. Adv. Funct. Mater. 2018, 29, 1805533. [Google Scholar] [CrossRef]
- Inac, M.; Shafique, A.; Ozcan, M.; Gurbuz, Y. Model, design, and fabrication of antenna coupled metal-insulator-metal diodes for IR sensing. Proc. SPIE 2015, 9451, 94511L. [Google Scholar]
- Bhatt, K.; Shriwastava, S.; Kumar, S.; Tripathi, S.; Tripathi, C.C. Chapter Terahertz Detectors (THzDs): Bridging the Gap for Energy Harvesting. In Terahertz Spectroscopy—A Cutting Edge Technology; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Matsuura, D.; Shimizu, M.; Yugami, H. High-current density and high asymmetry MIIM diode based on oxygen-nonstoichiometry controlled homointerface structure for optical rectenna. Sci. Rep. 2019, 9, 19639. [Google Scholar] [CrossRef] [PubMed]
- Citroni, R.; Di Paolo, F.; Livreri, P. Progress in THz Rectifier Technology: Research and Perspectives. Nanomaterials 2022, 12, 2479. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Moddel, G. Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers. Solid-State Electron. 2012, 67, 94–99. [Google Scholar] [CrossRef]
- Aydinoglu, F.; Alhazmi, M.; Cui, B.; Ramahi, O.M.; Irannejad, M.; Brzezinski, A.; Yavuz, M. Higher Performance Metal-Insulator-Metal Diodes using Multiple Insulator Layers. Austin. J. Nanomed. Nanotechnol. 2014, 1, 3. [Google Scholar]
- Weerakkody, A.D.; Sedghi, N.; Mitrovic, I.Z.; van Zalinge, H.; Nemr Noureddine, I.; Hall, S.; Wrench, J.S.; Chalker, P.R.; Phillips, L.J.; Treharne, R.; et al. Enhanced low voltage nonlinearity in resonant tunneling metal-insulator-insulator-metal nanostructures. Microelectron. Eng. 2015, 147, 298–301. [Google Scholar] [CrossRef]
- Herner, S.B.; Weerakkody, A.D.; Belkadi, A.; Moddel, G. High performance MIIM diode based on cobalt oxide/titanium oxide. Appl. Phys. Lett. 2017, 110, 223901. [Google Scholar] [CrossRef]
- Elsharabasy, A.Y.; Alshehri, A.H.; Bakr, M.H.; Deen, M.J.; Musselman, K.P.; Yavuz, M. Near zero-bias MIIM diode based on TiO2/ZnO for energy harvesting applications. AIP Adv. 2019, 9, 115207. [Google Scholar] [CrossRef]
- Maraghechi, P.; Foroughi-Abari, A.; Cadien, K.; Elezzabi, A.Y. Observation of resonant tunneling phenomenon in metal-insulator-insulator- insulator-metal electron tunnel devices. Appl. Phys. Lett. 2012, 100, 113503. [Google Scholar] [CrossRef]
- Alisson, B.J. Metal–Insulator–Metal Diodes for Solar Energy Conversion. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2001. [Google Scholar]
- Maraghechi, P.; Foroughi-Abari, A.; Cadien, K.; Elezzabi, A.Y. Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl. Phys. Lett. 2011, 99, 253503. [Google Scholar] [CrossRef]
- Alimardani, N.; Conley, J.F., Jr. Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Appl. Phys. Lett. 2013, 102, 143501. [Google Scholar] [CrossRef]
- Ajayi, O.A. DC and RF Characterization of High Frequency ALD Enhanced Nanostructured Metal-Insulator-Metal Diodes. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2014. [Google Scholar]
- Elsharabasy, A.Y.; Bakr, M.H.; Deen, M.J. Towards an optimal MIIM diode for rectennas at 10.6 μm. Results Mater. 2021, 11, 100204. [Google Scholar] [CrossRef]
- Singha, A.; Ratnaduraib, R.; Kumara, R.; Krishnana, S.; Emirovc, Y.; Bhansali, S. Fabrication and current–voltage characteristics of NiOx/ZnO based MIIM tunnel diode. Appl. Surf. Sci. 2015, 334, 197–204. [Google Scholar] [CrossRef]
- Stearns, J.; Moddel, G. Simulation of Z-Shaped Graphene Geometric Diodes Using Particle-in-Cell Monte Carlo Method in the Quasi-Ballistic Regime. Nanomaterials 2021, 11, 2361. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Zhu, Z.; Grover, S.; Moddel, G. Infrared optical response of geometric diode rectenna solar cells. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 002976–002978. [Google Scholar]
- Zhu, Z.; Grover, S.; Krueger, K.; Moddel, G. Optical rectenna solar cells using graphene geometric diodes. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 002120–002122. [Google Scholar]
- Zhu, Z.; Joshi, S.; Grover, S.; Moddel, G. Graphene geometric diodes for terahertz rectennas. J. Phys. D Appl. Phys. 2013, 46, 185101. [Google Scholar] [CrossRef]
- Wang, H.; Jayaswal, G.; Deokar, G.; Stearns, J.; Costa, P.M.F.J.; Moddel, G.; Shamim, A. CVD-Grown Monolayer Graphene-Based Geometric Diode for THz Rectennas. Nanomaterials 2021, 11, 1986. [Google Scholar] [CrossRef] [PubMed]
- Citroni, R.; D’Arrigo, G.; Livreri, P. A mid-IR Plasmonic Graphene Nanorectenna-based Energy Harvester to Power IoT Sensors. In Proceedings of the 2022 11th International Conference on Renewable Energy Research and Application (ICRERA), Istanbul, Turkey, 18–21 September 2022; pp. 311–316. [Google Scholar]
- Citroni, R.; Livreri, P. A Novel Shape of Bowtie Antenna Arranged in a Linear Array for Energy Harvesting in MID-IR Band. In Proceedings of the 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), Oshawa, ON, Canada, 29 August–1 September 2023; pp. 248–253. [Google Scholar]
- Biagioni, P.; Huang, J.S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402. [Google Scholar] [CrossRef] [PubMed]
- Maksymov, I.S.; Staude, I.; Miroshnichenko, A.E.; Kivshar, Y.S. Optical Yagi-Uda nanoantennas. Nanophotonics 2012, 1, 65–81. [Google Scholar] [CrossRef]
- Di Garbo, C.; Livreri, P.; Vitale, G. Optimal matching between optical rectennas and harvester circuits. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–6. [Google Scholar]
- Di Garbo, C.; Livreri, P.; Vitale, G. Solar Nanoantennas energy based characterization. Renew. Energy Power Qual. J. 2016, 1, 862–867. [Google Scholar] [CrossRef]
- Shuvo, M.M.H. Edge AI: Leveraging the Full Potential of Deep Learning. In Recent Innovations in Artificial Intelligence and Smart Applications, Studies in Computational Intelligence; Springer: Berlin, Germany, 2022; Volume 1061. [Google Scholar]
- Wahba, M.A.; Ashour, A.S.; Ghannam, R. Prediction of Harvestable Energy for Self-Powered Wearable Healthcare Devices: Filling a Gap. IEEE Access 2020, 8, 170336–170354. [Google Scholar] [CrossRef]
- Kwan, J.C.; Chaulk, J.M.; Fapojuwo, A.O. A Coordinated Ambient/Dedicated Radio Frequency Energy Harvesting Scheme Using Machine Learning. IEEE Sens. J. 2020, 20, 13808–13823. [Google Scholar] [CrossRef]
- Hussein, D.; Bhat, G.; Doppa, J.R. Adaptive Energy Management for Self-Sustainable Wearables in Mobile Health. In Proceedings of the AAAI, Vancouver, BC, Canada, 22 February–1 March 2022. [Google Scholar]
- Akinaga, H. Recent advances and future prospects in energy harvesting technologies. Jpn. J. Appl. Phys. 2020, 59, 110201. [Google Scholar] [CrossRef]
- Ye, Y.; Azmat, F.; Adenopo, I.; Chen, Y.; Shi, R. RF energy modelling using machine learning for energy harvesting communications systems. Int. J. Commun. Syst. 2021, 34, e4688. [Google Scholar] [CrossRef]
- Politi, B.; Foucaran, A.; Camara, N. Low-Cost Sensors for Indoor PV Energy Harvesting Estimation Based on Machine Learning. Energies 2022, 15, 1144. [Google Scholar] [CrossRef]
- Park, Y.; Cho, K.; Kim, S. Performance Prediction of Hybrid Energy Harvesting Devices Using Machine Learning. ACS Appl. Mater. Interfaces 2022, 14, 11248–11254. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cho, M.; Li, Y.; He, T.; Ahn, J.; Park, J.; Ren, T.L.; Lee, C.; Park, I. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 2021, 86, 106035. [Google Scholar] [CrossRef]
- Hamdi, R.; Chen, M.; Said, A.B.; Qaraqe, M.; Poor, H.V. Federated Learning over Energy Harvesting Wireless Networks. IEEE Internet Things J. 2022, 9, 92–103. [Google Scholar] [CrossRef]
- Guler, B.; Yener, A. Energy-Harvesting Distributed Machine Learning. In Proceedings of the 2021 IEEE International Symposium on Information Theory, Virtual, 11–16 July 2021; pp. 320–325. [Google Scholar]
- Pervez, I.; Antoniadis, C.; Massoud, Y. A Reduced Search Space Exploration Metaheuristic Algorithm for MPPT. IEEE Access 2022, 10, 26090–26100. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Liu, Y.; Gao, K.; Yin, T.; Yu, H. Few-shot learning based multi-weather-condition impedance identification for MPPT-controlled PV converters. IET Renew. Power Gener. 2022, 16, 1345–1353. [Google Scholar] [CrossRef]
- Singh, Y.; Pal, N. Reinforcement learning with fuzzified reward approach for MPPT control of PV systems. Sustain. Energy Technol. Assess. 2021, 48, 101665. [Google Scholar] [CrossRef]
- Zafar, M.H.; Khan, N.M.; Mansoor, M.; Khan, U.A. Towards green energy for sustainable development: Machine learning based MPPT approach for thermoelectric generator. J. Clean. Prod. 2022, 351, 131591. [Google Scholar] [CrossRef]
- Zhu, W.; Deng, Y.; Wang, Y.; Shen, S.; Gulfam, R. High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management. Energy 2016, 100, 91–101. [Google Scholar] [CrossRef]
- Kraemer, D.; Hu, L.; Muto, A.; Chen, X.; Chen, G.; Chiesa, M. Photovoltaic-thermoelectric hybrid systems: A general optimization methodology. Appl. Phys. Lett. 2008, 92, 243503. [Google Scholar] [CrossRef]
- Park, K.-T.; Shin, S.M.; Tazebay, A.S.; Um, H.D.; Jung, J.Y.; Jee, S.W.; Oh, M.W.; Park, S.D.; Yoo, B.; Yu, C.; et al. Lossless hybridization between photovoltaic and thermoelectric devices. Sci. Rep. 2013, 3, 2123. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Liu, X.; Wang, X.; Li, Q. An energy extraction enhanced interface circuit for piezoelectric and thermoelectric energy harvesting. IEICE Electron. Express 2019, 16, 20190066. [Google Scholar] [CrossRef]
- Veloo, S.G.; Tiang, J.J.; Muhammad, S.; Wong, S.K. A Hybrid Solar-RF Energy Harvesting System Based on an EM4325-Embedded RFID Tag. Electronics 2023, 12, 4045. [Google Scholar] [CrossRef]
- Zhang, Z.; He, T.; Zhao, J.; Liu, G.; Wang, Z.L.; Zhang, C. Tribo-thermoelectric and tribovoltaic coupling effect atmetal-semiconductor interface. Mater. Today Phys. 2021, 16, 100295. [Google Scholar] [CrossRef]
IRIS [2] | MicaZ [3] | IMote2 [4] | SunSpot [5] | Waspmote [6] | WiSMote [7] | |
---|---|---|---|---|---|---|
Radio standard | 802.15.4/ZigBee | 802.15.4/ZigBee | 802.15.4 | 802.15.4 | 802.15.4/ ZigBee | 802.15.4/ZigBee/6LoWPAN |
Microcontroller | ATmega 1281 | ATMEGA 128 | Marvell PXA271 | ARM 920 T | Atmel ATmega 1281 | MSP430F5437 |
Sleep | 8 μA | 15 μA | 390 μA | 33 μA | 55 μA | 12 μA |
Processing | 8 mA | 8 mA | 31–53 mA | 104 mA | 15 mA | 2.2 mA |
Receive | 16 mA | 19.7 mA | 44 mA | 40 mA | 30 mA | 18.5 mA |
Transmit | 15 mA | 17.4 mA | 44 mA | 40 mA | 30 mA | 18.5 mA |
Idle | – | – | – | 24 mA | – | 1.6 mA |
Supply | 2.7–3.3 V | 2.7 V | 3.2 V | 4.5–5.5 V | 3.3–4.2 V | 2.2–3.6 V |
Average | – | 2.8 mW | 12 mW | – | – | – |
Reference | Energy Source | Method | Merit | Power Density | Efficiency | Weakness | Applications |
---|---|---|---|---|---|---|---|
[10,11,12] | Light Energy | Photovoltaic | Predictable, Mature | 5–100 mW/cm2 (Outdoor) 0.5–1000 μW/cm2 (Indoor) | 30% 15% | Expensive, light not steadily available, Maximum Power Point Tracking (MPPT) is needed. | Biometric, agriculture, monitoring, ZNE building, indoor and portable devices |
[13] | Radio-frequency energy | Rectenna | Continuously available, can carry and process information simultaneously | 0.01–0.3 μW/cm2 | ±50% | Efficiency decreases with distance, impedance matching is needed | Sensor, nuclear, wirelessly powering |
[14] | Thermal radiation is emitted by objects at moderate temperatures, typically within the range of 300 to 4000 K. This also encompasses the radiation emitted by the Earth’s surface. | Rectenna | Continuous available, waste heat can be used | 60 mW/cm2 | 1% | Limited conversion efficiency, thermal losses, narrow bandwidth, challenges in design and fabrication, impedance matching needed | Energy harvesting, thermal imaging, remote sensing, communications, spectroscopy |
State | |||
---|---|---|---|
Module | Operation | Classifier | Consumption |
Communication | RX (RF) | Active | Tens of mA |
TX (RF) | Active | Tens of mA | |
Sleep | Inactive | μA | |
Computation | Processing | Active | Hundreds of μAMHz−1 |
Memory access | Active | mA | |
Sleep | Inactive | μA | |
Sensing | Sampling | Active | μA—hundreds of mA |
Warm-up | Active | μA—hundreds of mA | |
Sleep | Inactive | μA |
Pros | Drawbacks | |
---|---|---|
Supply voltage scaling VDD | scaling VDD ⇒ scaling PSwitching quadratically | scaling VDD ⇒ lower circuit speed (decreasing circuit performance) |
Frequency Scaling fSW | scaling fClock ⇒ scaling PSwitching linearly | scaling fClock ⇒ lower circuit speed (decreasing circuit performance) |
Minimization of switched capacitance CL (small transistors, short wires, smaller fan-out) | Scaling C ⇒ scaling PSwitching and heat dissipation; | Potential degradation of signal quality; limited flexibility for system modifications or upgrades |
Switching activity α | Lower switching activity α ⇒ more energy-efficient; lower switching activity α ⇒ reduced Electromagnetic Interference (EMI) | Extremely low switching activity α ⇒ increased propagation delays; extremely low switching activity α ⇒ instability and issues like signal crosstalk in the circuit; optimizing switching activity α ⇒ careful design considerations |
Specifications | Bluetooth Classic BR/EDR 1 | BLE | |
---|---|---|---|
Bluetooth 4.x | Bluetooth 5 | ||
Radio freq. (MHz) | 2400 to 2483.5 | 2400 to 2483.5 | 2400 to 2483.5 |
Channels | 79 (1 MHz) | 40 (2 MHz) | 40 (2 MHz) |
Distance (m) | Up to 100 | Up to 100 | Up to 200 |
Latency (ms) | 100 | <6 | <6 |
Data rate (Mbps) | 1, 2, 3 | 1 | 0.5, 0.125, 1, 2 |
Max active nodes | 8 | Unlimited | Unlimited |
Massage size (bytes) | Up to 358 | 31 | 255 |
Max payload (bytes) | 1021 | 37,255 | 255 |
Peak current (mA) | <30 | <15 | <15 |
Amendment | Naming Convention | Year | Operating Band | Max Bandwidth | Max Data Rate | PHY | Low Latency | Low Power |
---|---|---|---|---|---|---|---|---|
802.11b | Wi-Fi 1 | 1999 | 5 GHz | 22 MHz | 11 Mbps | DSSS | yes | yes |
802.11a | Wi-Fi 2 | 1999 | 2.4 GHz | 20 MHz | 54 Mbps | OFDM | yes | yes |
802.11g | Wi-Fi 3 | 2003 | 2.4 GHz | 20 MHz | 54 Mbps | MIMO-OFDM | yes | yes |
802.11n | Wi-Fi 4 | 2008 | 2.4/5 GHz | 40 MHz | 600 Mbps | OFDM | yes | yes |
802.11ac | Wi-Fi 5 | 2014 | 5 GHz | 40 MHz | 6.39 Gbps | 256-QAM, OFDM, DL MIMO, channel bounding | yes | yes |
802.11ah | Wi-Fi HaLow | 2017 | Sub-1 GHz | 16 MHz | 347 Mbps | OFDM, DL-MU MIMO | yes | yes |
802.11ax | Wi-Fi 6 | 2019 2020 (6E) | 2.4/5 GHz, 6 GHz for Wi-Fi 6E | 160 MHz | 9.6 Gbps | OFDMA, UL/DL MIMO, Channel Bounding | yes | yes |
802.11be | Wi-Fi 7 | 2024 | 2.4/5/6 GHz | 20 MHz | 40 Gbps | 4096-QAM, Coordinated OFDMA, UL/DL MIMO | yes | yes |
Parameters | ZigBee |
---|---|
Standard | IEEE 802.15.4 |
Frequency band | 868/915 MHz and 2.4 GHz |
Modulation type | BPSK/OQPSK |
Spreading | DSSS |
Number of RF channels | 1, 10, and 16 |
Channel bandwidth | 2 MHz |
Power consumption in TX mode | Low (36.9 mW) |
Data rate | 20, 40, and 250 kbps |
Latency | (20–30) ms |
Communication range | 100 m |
Network size | 65,000 |
Cost | Low |
Security capability | 128 bits AES |
Network Topologies | P2P, tree, star, mesh |
Application | WPANs, WSNs, and Agriculture |
Limitations | line-of-sight (LOS) between the sensor node and the coordinator node must be available |
Parameters | Z-Wave |
---|---|
Standard | ITU-T G.9959 (PHY and MAC) |
RF Frequency Range | 868.42 MHz in Europe, 908.42 MHz in US |
Data rate | 9.6, 40, 100 Kbps |
Maximum Nodes | 232 |
Architecture | Master and slave in mesh mode |
MAC layer | CSMA/CA |
RF PHY modulation | FSK (for 9.6 kbps and 40 kbps), GFSK with BT = 0.6 (for 100 kbps) |
Coding | Manchester (for 9.6 kbps), NRZ (for 40 and 100 kbps) |
Distance | 30 m in indoors, 100 m the outdoors |
Standard | Network | Topology | Power | Frequency Bands | Data Rate | Range | Spreading | Security | Common Applications |
---|---|---|---|---|---|---|---|---|---|
IEEE 802.15.4 | WPAN | Star, Mesh | Low | 868 MHz (EU), 915 MHz (USA), 2.4 GHz (Global) | 250 kbps | 10–100 m Short Range | DSSS | AES-128 | Monitor and Control via Internet |
Coverage | Payload | Data Rate (Max) | Frequency Range | Security | Transmission Power |
---|---|---|---|---|---|
15 Km | 243 Bytes | <50 kbps | 125 kHz | AES Encryption | 20 dBm |
Coverage | Payload | Data Rate (Max) | Frequency Range | Security | Transmission Power |
---|---|---|---|---|---|
13 Km | 12 Bytes | <100 kbps | 868/915 MHz | None | 13.5 dBm |
Modulation | Band | Data Rate | Range | MAC | Topology | Payload Size | Proprietary Aspects | Deployment Model |
---|---|---|---|---|---|---|---|---|
QPSK | Licensed 700–900 MHz | 158.5 kbps (UL) 1, 106 kbps (DL) 2 | 15 km | FDMA/OFDMA | Star | 125 B (UL), 85 B (DL) | Full stack | Operator-based |
Technology | Frequency Band | Range | Maximum Data Rate | Channel Bandwidth | Modulation | Scalability | Reliability | Low Latency | Low Power |
---|---|---|---|---|---|---|---|---|---|
LTE-M (Rel13) | 1.7–2.1 GHz, 1.9 GHz, 2.5–2.7 GHz | 12 km | 1 Mbps | 1.4 MHz | BPSK/QPSK | Yes | Yes | Yes | Yes |
LTE-M (Rel14) | 1.7–2.1 GHz, 1.9 GHz, 2.5–2.7 GHz | 12 km | 4 Mbps | 5 MHz | BPSK/QPSK | Yes | Yes | Yes | Yes |
2G | 3G | 4G | 5G | |
---|---|---|---|---|
Year of Introduction | 1993 | 2001 | 2009 | 2018 |
Technology | GSM | WCDMA | LTE, WiMAX | MIMO, mmWaves |
Access System | TDMA, CDMA | CDMA | CDMA | OFDM, BDMA |
Switching Type | Circuit, packet | Circuit, packet | Packet | Packet |
Network | PSTN | PSTN | Packet Network | Internet |
Internet Service | Narrowband | Broadband | Ultrabroadband | Wireless World Wide Web |
Bandwidth | 25 MHz | 25 MHz | 150 MHz | 700 MHz (Europe) |
Speed | 64 Kbps | 8 Mbps | 300 Mbps | 10–30 Gbps |
Latency | 300–1000 ms | 100–500 ms | 20–30 ms | 1–10 ms |
Mobility | 60 km | 100 km | 200 km | 500 km |
Parameters | 4G | 5G | 6G |
---|---|---|---|
Peak data rate/device | 1 Gbps | 10 Gbps | 1 Tbps |
Latency | 100 ms | 1 ms | 0.1 ms |
Max. spectral efficiency | 15 bps/Hz | 30 bps/Hz | 100 bps/Hz |
Energy efficiency | <1000× relative to 5G | 1000× relative to 4G | >10× relative to 5G |
Connection density | 2000 devices/km2 | 1 million devices/km2 | >10 million devices/km2 |
Coverage percent | <70% | 80% | >99% |
Positioning precision | Meters precision (50 m) | Meters precision (20 m) | Centimeter precision |
End-to-end reliability | 99.9% | 99.999% | 99.9999% |
Receiver sensitivity | Around −100 dBm | Around −120 dBm | <−130 dBm |
Mobility support | 350 km/h | 500 km/h | >1000 km/h |
Satellite integration | No | No | Fully |
AI | No | Partial | Fully |
Autonomous vehicle | No | Partial | Fully |
Extended Reality | No | Partial | Fully |
Haptic Communication | No | Partial | Fully |
THz communication | No | Limited | Widely |
Service level | Video | VR, AR | Tactile |
Architecture | MIMO | Massive MIMO | Intelligent surface |
Max. frequency | 6 GHz | 90 GHz | 10 THz |
Parameter | GEO | LEO |
---|---|---|
Altitude | 36,000 km | 500 to 1200 km |
Coverage area | Vast | Narrow |
Downlink and uplink rate (signal speed) | Slow | Fast |
Ground station spacing | Distant | Local |
Antenna | Stationary | Complex tracking and terrestrial network |
Band | ||
Frequency | band (4–8 GHz), Ku-band (12–18 GHz), and Ka-band (26.5–40 GHz) | L-band (1–2 GHz) |
Capacity uplink | 10–50 Mbps | 100 Mbps for traditional LEO; 1 Gbps for advanced LEO |
Capacity downlink | 100–500 Mbps | 500 Mbps for traditional LEO; 10 Gbps for advanced LEO |
Latency | 550 ms | 25–50 ms |
Advantages |
|
|
Disadvantages |
|
|
Functions | Descriptions |
---|---|
Monitoring and managing the battery level | The PMU monitors the battery level of the node to maintain optimal power supply |
Power gating | The PMU controls power supply to node components, turning them on or off to save power |
Sleep modes | PMU can optimize power usage by putting the node into low-power sleep modes when not in use, thus conserving battery life. |
Voltage regulation | PMU regulates node component voltage to ensure optimal operation and reduce power wastage |
Power optimization | PMU uses power-saving algorithms and techniques like duty cycling and voltage scaling to optimize node power consumption. |
DC-DC Converter | Minimum VIN | Maximum VIN | Vout | MPPC/MPPT |
---|---|---|---|---|
LTC3108 | 20 mV | 500 mV | 2.35 V to 5 V | No |
LTC3105 | 250 mV (start-up mode) 225 mV (regime mode) | 5 V | 3.3 V | Yes |
Energy Source Types | Description |
---|---|
Uncontrolled but predictable | Although unpredictable, renewable energy can be accurately planned out, allowing us to anticipate its availability within a certain margin of error. |
Uncontrolled and unpredictable | Unpredictable and inconsistent, this energy source is difficult to regulate or manage due to its natural variability and intermittent availability. |
Fully controllable | Energy can be generated when desired |
Partially controllable | This energy source shows some level of control over the output, but is not fully controllable or predictable. |
Energy Source | Predictable | Unpredictable | Controllable | Non-Controllable |
---|---|---|---|---|
Solar | ✓ | ✓ | ||
RF | ✓ | ✓ | ||
Thermal | ✓ | ✓ | ||
Pyroelectric | ✓ | ✓ |
Type | Rated Voltage (V) | Capacity (Ah) | Temperature Range (°C) | Cycling Capacity | Specific Energy (Wh/kg) |
---|---|---|---|---|---|
Lead-Acid | 2 | 1.3 | −20–60 | 500–1000 | 30–50 |
MnO2Li | 3 | 0.03–5 | −20–60 | 1000–2000 | 280 |
Li poly-carbon | 3 | 0.025–5 | −20–60 | - | 100–250 |
LiSOCl2 | 3.6 | 0.025–40 | −40–85 | - | 350 |
LiO2S | 3 | 0.025–40 | −60–85 | - | 500–700 |
NiCd | 1.2 | 1.1 | −40–70 | 10,000–20,000 | 50–60 |
NiMH | 1.2 | 2.5 | −20–40 | 1000–20,000 | 60–70 |
Li-Ion | 3.6 | 0.74 | −30–45 | 1000–100,000 | 75–200 |
MnO2 | 1.65 | 0.617 | −20–60 | - | 300–610 |
Battery Generation | Technology/Electrode Active Materials | Cell Chemistry/Type | Implementation Date/Forecast Market Deployment |
---|---|---|---|
Gen 1 | Cathode: NFP, NCA, LCO 1 Anode: Carbone/Graphite | Lithium-Ion | 1991 |
Gen 2a | Cathode: NMC111, LMO2 2 Anode: Carbone/Graphite | Lithium-Ion | 1994 |
Gen 2b | Cathode: NMC532, NMC622 3 Anode: Carbone/Graphite | Lithium-Ion | 2005 |
Gen 3a | Cathode: NMC622, NMC 811 4 Anode: Graphite + 5/10% Si | Lithium-Ion | 2020 |
Gen 3b | Cathode: High Energy NMC, High Voltage Spinel—5 V Anode: Silicon/Carbon | Optimized Lithium-Ion | 2025 |
Gen 4a | Cathode: NMC Anode: Silicon/Carbon Solid Electrolyte | Solid State Lithium-Ion | 2025 |
Gen 4b | Cathode: NMC Anode: Lithium metal Solid Electrolyte | Solid State Lithium-Metal | >2025 |
Gen 4c | Cathode: High Energy NMC, High Voltage Spinel Anode: Lithium metal Solid Electrolyte | Advanced Solid State | 2030 |
Gen 5 | LiO2 Li–Air/Metal–Air Li-Sulphur New ion-based systems (Na, Mg, Zn or Al) | Metal–Air | >2030 |
LiS | |||
New ion-based insertion chemistries |
Capacitor | Battery |
---|---|
Electric field for storage | The chemical reaction for storage |
Submissive component | Active component |
Energy density is low | Energy density is high |
Charging/discharging is fast | Charging/discharging is slow |
Provides unstable voltage | Provides constant voltage |
Operating temperature range is −3 °C to +125 °C | 20 °C to 30 °C during charging and 15 °C to 25 °C during discharging |
Higher cost | Low cost |
Contrived of metal sheets | Contrived of metals, chemicals |
Supercapacitor | Life Cycle (-) | Specific Energy (Wh/kg) | Operating Temperature (°C) | Cell Voltage (V) |
---|---|---|---|---|
Maxwell PC10 | 500,000 | 1.4 | −40–70 | 2.50 |
Maxwell BCAP0350 | 500,000 | 5.1 | −40–70 | 2.50 |
Green-cap EDLC | >100,000 | 1.47 | −40–60 | 2.70 |
EDLC SC | 1,000,000 | 3–5 | −40–65 | 2.70 |
Pseudo SC | 100,000 | 10 | −40–65 | 2.3–2.8 |
Hybrid SC | 500,000 | 180 | −40–65 | 2.3–2.8 |
Property | Batteries | Fuel Cells | Capacitors | Supercapacitors |
---|---|---|---|---|
Weight | 1 g–>10 kg | 20 g–>5 kg | 1 g–10 g | 1 g–230 g |
Operating temperature | −20 to 65 °C | 25 to 90 °C | −20 to 100 °C | −40 to 85 °C |
Operating voltage | 1.25–4.2 V | 0.6 V | 6–800 V | 2.3–2.7 V |
Power density | 0.005–0.4 KW/Kg | 0.001–0.1 KW/Kg | 0.25–10.0 KW/Kg | 10–120 KW/Kg |
Energy density | 8 to 600 Wh/Kg | 300 to 3 Wh/Kg | 0.01 to 0.05 Wh/Kg | 1–10 Wh/Kg |
Pulse load | ~5 A | ~150 mA/cm2 | ~1000 A | ~100 A |
Life cycle | 50,000 h + Unlimited Cycles | >100,000 cycles | 1500–10,000 h | 150–1500 cycles |
Capacitance | - | - | 10 pF–2.2 mF | 100 mF–1500 F |
Charge/discharge time | 1–10 h | 10–300 h | Picoseconds—milliseconds | Millisecond—seconds |
Columbic efficiency | 70–85% | - | About 100% | Up to 99% |
Charge method | Current and voltage | - | The voltage across the terminal, i.e., from a battery | The voltage across the terminal, i.e., from a battery |
Energy Storage Type | Energy Density (Wh/kg) | Advantages | Disadvantages | References |
---|---|---|---|---|
Lead acid | 25–50 |
|
| [81] |
NiCd | 40–75 |
|
| [82] |
NiMH | 70–100 |
|
| [83] |
Li-Ion | 150–350 |
|
| [84] |
Capacitors | 0.01–0.05 |
|
| [85] |
Supercapacitors | 2–5 |
|
| [86] |
Device Configuration | Electrolyte | Electrode Type | Energy Density (Wh/kg) | Power Density (W/kg) | Publication Year | Reference |
---|---|---|---|---|---|---|
WO3-WS2-MWCNT/Ni foam// AC/Ni foam | 3 M KOH | (+) PC//EDLC (−) | 86 24 | 848 11,828 | 2023 | [87] |
Ni-Co-Mg MOF/MoS2/Ni foam// AC/Ni foam | 1 M KOH | (+) PC//EDLC (−) | 107.32 | 1350 | 2023 | [88] |
NH4MnPO4@Graphene QD/Graphite//rGO/Graphite | 3 M H2SO4 3 M H2SO4 + 0.025 M (KI/VOSO4) | (+) PC//EDLC (−) | 199 311 | 450 450 | 2022 | [89] |
Ni3(PO4)2-MWCNTs/Ni foam// AC/Ni foam | (+) PC//EDLC (−) | 94.4 24.82 | 340 10,200 | 2022 | [90] | |
Mn-V-Sn oxyhydroxide/Ni foam// N-carbon/Ni foam | 1 M KOH | (+) PC//EDLC (−) | 70.6 17.1 | 1372.4 18,861.3 | 2022 | [91] |
NH4OH-ZIF/Ni foam//GO/Ni foam | 6 M KOH | (+) PC//EDLC (−) | 4.16 | 20,000 | 2022 | [92] |
CoS-Co3(PO4)2/Ni foam//AC/Ni foam | 1 M KOH | (+) PC//EDLC (−) | 34.68 63.93 | 13,600 850 | 2021 | [93] |
Fe3O4@N-carbon-rGO/Ni foam// rGO/Ni foam | 6 M KOH | (+) PC//EDLC (−) | 46 10 | 750 7500 | 2021 | [94] |
MWCNT-NiMnPO4/Ni foam// AC/Ni foam | 2 M KOH | (+) PC//EDLC (−) | 698 43 | 78 5780 | 2020 | [95] |
graphitic carbon nitride (g-C3N4)-BiVO4/Graphite paper (symmetric) | 3.5 M KOH | (+) PC//PC (−) | 61 7.2 | 1996 16,200 | 2020 | [96] |
Zn-Carbon cloths//S/P doped carbon (S/p-C)/graphite rod | 0.5 M K2SO4 1 M KBr | (+) PC//PC (−) | 270 181 | 185 9300 | 2020 | [97,98] |
Advantages | Disadvantages |
---|---|
High energy density | Limited cycle life |
Long range | Slow recharge rate |
Low cost | Limited power output |
Rechargeable | Corrosion |
Environmentally friendly | Limited availability |
Metal Oxygen | Open Circuit Potential (Volts) | Energy Density (Wh/kg) | Energy Density (Wh/L) |
---|---|---|---|
Al–air | 2.71 | 4116 | 14,100 |
Ca–air | 3.10 | 2980 | 9960 |
Mg–air | 3.08 | 3991 | 12,200 |
Fe–air | 1.35 | 763 | 1431 |
Li–air | 2.96 | 3458 | 6102 |
Zn–air | 1.68 | 1054 | 5960 |
Current Collectors | Electrode | Electrolyte | Voltage Window | Reference |
---|---|---|---|---|
Au | Cathode | 1 M LiClO4 in PC 1 1 M LiPF6 in EC/DMC 2 | 3–5 3–4.4 | [104] |
Ag | Cathode | 1 M LiClO4 in PC 1 M LiPF6 in EC/DMC | 3–3.7 | [105] |
Al | Cathode | 1 M LiClO4 in PC 1 M LiPF6 in EC/DMC | 1.5–5.5 1.5–5 | [106] |
Ni | Cathode | 1 M LiPF6 in EC/DMC | 3–4.5 | [107] |
Stainless steel | Cathode | 1 M LiPF6 in EC/DMC | 3–4.5 | [108] |
Stainless steel | Cathode | 1 M LiPF6 in EC/DMC | 1.5–5.5 | [109] |
Cr | Cathode/anode | 1 M LiPF6 in EC/DMC | 0–4 | [110] |
Ti | Cathode/anode | 1 M LiPF6 in EC/DMC | 0–4 | [111] |
TiN | Cathode/anode | 1 M LiPF6 in EC/DMC | 0–4.12 | [112] |
Carbon fiber paper | Cathode/anode | 1 M LiPF6 in EC/DMC | 1.5–3 | [113] |
Stainless steel | Cathode/anode | 1 M LiPF6 in EC/DMC | 2–3.4 | [114] |
Fe | anode | 1 M LiPF6 in EC/DMC | 0–3.2 | [115] |
Cu | anode | 1 M LiPF6 in EC/DMC | 0–3 | [116] |
Energy Source | Technology | Power Density | Advantages | Disadvantages | Application Domain |
---|---|---|---|---|---|
Solar [114] | PV cell | 10–100 mW/cm2 (outdoor) <100 μW/cm2 (indoor) | High output voltage Low fabrication costs Predictable | Unavailable at night Non-controllable | Environment monitoring, healthcare, agriculture |
RF [115] | Rectenna | 0.01–0.1 μW/cm2 1–10 mW/cm2 | Available anywhere, anytime Predictable Controllable | Distance dependent Low power density Interference | Environment monitoring |
MID-IR [15] | Rectenna | 60 mW/cm2 | Sustainable and reliable Available Controllable | Low power density Low efficiency | Environment monitoring, healthcare, |
Full Name | Designation | Description |
---|---|---|
Efficiency or power conversion efficiency (PCE) | ƞ | It indicates how much energy can be extracted from sunlight by a single P–N junction |
Open-Circuit Voltage | Voc | It indicates the maximum voltage that a solar cell can generate under illumination |
Short-Circuit Current | Isc | It represents the maximum current that a solar cell can produce under full sunlight exposure |
Fill Factor | FF | FF represents how efficiently a solar cell converts sunlight into electricity |
Maximum Power Point | Pmax | Pmax represents the maximum electrical power output that a solar cell can generate |
Voltage at Maximum Power | Vmpp | The voltage at which the solar cell operates to produce the maximum power output. |
Current at Maximum Power | Impp | The current at which the solar cell operates to produce the maximum power output. |
Shunt Resistance | Rsh | A higher Rsh value signifies reduced leakage current and enhanced efficiency. |
Series Resistance | Rs | Lower Rs values lead to better performance. |
Material | Sub-Material | ƞ | Advantages | Problems |
---|---|---|---|---|
Single crystal | 20% [119] | |||
c-Si | Polycrystal | 16% [126] | Cost-effective as compared to the monocrystalline module [120]. | |
a-Si | 11.3% [127] | |||
CdTe/CdS | 18.3% [130] | |||
Thin Films | CIS/CIGS | 22.8% [132] |
| In and Ga sources are limited [134]. |
GaAs | Over 30% [135] | |||
Organic Semiconductors | 18% | Flexibility and versatility; Low-cost production; Tunable properties; Large-area fabrication | Low carrier mobility; Sensitivity to environmental factors; Limited device lifetime; Narrow operational temperature range; Limited energy levels and bandgaps | |
Quantum Dots | 20% | Size-tunable properties; High quantum yield; Broad absorption spectra; Good stability; Compatibility with different substrates | Toxicity concerns; Cost; Limited device lifetime; Difficulty in large-area deposition; Complexity | |
Quantum Wells | 40–50% (only in laboratory) | Bandgap engineering; Improved carrier confinement; Efficient light emission; Compatibility with existing semiconductor technologies; High quantum efficiency | Complexity of fabrication; Strain-related issues: Temperature sensitivity Narrowband emission Sensitivity to defects | |
Perovskite | 24% | High light absorption; Tunable bandgap; Solution processability; High charge carrier mobility; Versatility; High efficiency | Environmental stability; Toxic materials; Performance and reproducibility; Limited device lifetime; Scalability issues |
Material Structure | S, cm2 | Jsc, mA/cm2 | FF, % | Efficiency |
---|---|---|---|---|
c-Si | 4.00 | 40.9 | 82.7 | 24.0 |
c-Si | 45.7 | 39.4 | 78.1 | 21.6 |
c-Si | 22.1 | 41.6 | 80.3 | 23.4 |
mc-Si | 1.00 | 36.5 | 80.4 | 18.6 |
mc-Si | 100 | 36.4 | 77.7 | 17.2 |
tf-Si | 240 | 27.4 | 76.5 | 12.2 |
tf-Si | 4.04 | 379 | 81.1 | 21.1 |
a-Si:H | 1.06 | 16.66 | 71.7 | 10.3 |
a-Si:H | 0.99 | 17.46 | 70.4 | 10.9 |
a-Si:H | 1.0 | 19.4 | 74.1 | 12.7 |
a-Si:H | 1.08 | 18.8 | 70.1 | 1 1.5 |
ITO/c-Si/a-Si | 1.0 | 39.4 | 79.0 | 20.0 |
a-Si:H | 1.0 | 19.13 | 70.0 | 12.0 |
a-Si:H | 1.0 | 18.4 | 72.5 | 12.3 |
a-Si/a-Si/a-SiGe | 7.3 | 73.0 | 12.4 | |
a-Si:H | 1.0 | 19.4 | 74.1 | 12.7 |
a-C/a-SiML/a-SiC/a-Si | 1.0 | 19.6 | 71.8 | 13.2 |
a-C/a-Si/a-SiC/a-Si | 1.0 | 19.8 | 73.3 | 13.2 |
ITO/a-Si:H/a-SiGe:H | 0.28 | 11.72 | 65.8 | 12.5 |
a-Si/k-Si | 0.03 | 16.2 | 63.0 | 15.0 |
a-SiC/a-Si | 1.0 | 8.16 | 71.2 | 10.2 |
a-Si/a-Si | 1.0 | 9.03 | 74. I | 12.0 |
a-SiC/a-SiGe/a-SiGe | 1.0 | 7.9 | 68.5 | 12.4 |
a-Si/a-Si/a-siGe | 1.0 | 7.66 | 70.1 | 13.7 |
p-a-SiO:H/a-Si:H/n-a-Si:H | 1.0 | 18.8 | 74.0 | 12.5 |
ITO/a-Si:H/Si:H/a-siGe | 0.27 | 6.96 | 70 | 12.4 |
a-Si:H/a-Si:H/a-SiGc:H | 1.00 | 7.9 | 68.5 | 12.4 |
a-Si/CuInSe2 | 16.4 17.4 | 72.0 68.0 | 10.3 5.3 | |
a-Si/mc-Si | 10.4 30.2 | 76.0 79.2 | 7.25 13.75 |
Material Structure | S, cm2 | Jsc, mA/cm2 | FF% | Efficiency% |
---|---|---|---|---|
ss/ITO/CdS/CdTc//Cu/Au | 0.191 | 20.10 | 69.4 | 11.0 |
ss/SnO2/CdS/CdTe | 0.824 | 20.66 | 74.0 | 12.8 |
ss/SnO2/CdS/CdTe | 0.313 | 24.98 | 62.7 | 12.3 |
ss/SnO2/CdS/CdTe | 0.3 | 26.18 | 61.4 | 12.7 |
ss/SnO2/CdS/HgTeGa | 1.022 | 21.9 | 65.7 | 10.6 |
MgF2/ss/SnO2/CdS//CdTe/C/Ag | 1.047 | 25.09 | 74.5 | 15.8 |
ss/SnO2/CdS/CdTe/Ni | 1.068 | 20.93 | 69.6 | 11.2 |
ss/SnO2/CdS/CdTe | 0.08 | 22.1 | 66.0 | 10.9 |
MgF2/ss/SnO2/CdS/CdTe | 1.115 | 20.9 | 74.6 | 12.9 |
Ss/SnO2/CdS/CdTe/Cu/Au | 0.114 | 17.61 | 72.8 | 10.4 |
CdTe | 12.7 |
PCE (%) | Voc (V) | Jsc (mA/cm2) | FF | Device Configuration | Year | Reference |
---|---|---|---|---|---|---|
7.11 | 0.63 | 18.61 | 0.606 | FTO/PCBM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au | 2019 | [146] |
7.37 | 0.73 | 15.8 | 0.64 | Au/TiO2/m-TiO2/MASn0.25Pb0.75/Spiro-OMeTAD/Au | 2014 | [147] |
7.66 | 0.97 | 11.1 | 7.66 | ITO/ZnO/MASnI3/spiro-OMeTAD/Au | 2015 | [148] |
9 | 0.52 | 24.1 | 0.71 | ITO/PEDOT:PSS/FASnI3/C60BCP/Ag | 2017 | [149] |
9.2 | 0.61 | 21.2 | 0.72 | ITO/PEDOT:PSS/GAxFA0.98−xSnI3–1% EDAI2/C60 (20 nm)/BCP/Ag | 2018 | [150] |
9.8 | 0.76 | 19.1 | 0.66 | ITO/PEDOT:PSS/MAPb0.85Sn0.15I3−yCly/PC61BM/Ag | 2014 | [151] |
10.2 | 0.72 | 19.2 | 0.73 | FTO/TiO2/N719 Dye/Perovskite/ZnO | 2012 | [152] |
12.1 | 0.78 | 20.65 | 0.75 | ITO/PEDOT: PSS/MASn0.6Pb0.4I3−xBrx/PCBM/Ag | 2017 | [153] |
13.24 | 0.84 | 20.32 | 0.78 | FTO/PEDOT PSS/EA0.98EDA0.01SnI3/C60BCP/Au | 2020 | [154] |
14.06 | 0.79 | 22.8 | 0.78 | ITO/PEDOTPSS/MA0.5FA0.5Pb0.75Sn0.25I3/PC61 BM/C60/Ag | 2016 | [155] |
10.2 | 0.7 | 21.9 | 0.66 | ITO/PEDOT:PSS/FASn0.5Pb0.5I3/C60 BCP/Ag | 2016 | [156] |
14.1 | 0.74 | 26.1 | 0.71 | ITO/PEDOT:PSS/C60 BCP/Ag | 2016 | [157] |
15.08 | 0.79 | 26.86 | 0.70 | ITO/PEDOT:PSS/(CH3NH3)0.4[HC(NH2)2]0.6Sn0.6Pb0.4I3/C60/BCP/Ag | 2016 | [158] |
17.55 | 1.03 | 21.9 | 0.78 | ITO/PEDOT:PSS/MAPb0.85In0.15I3Cl0.15/PC61 BM/Bphen/Ag | 2016 | [159] |
18 | 1.02 | 22.4 | 0.78 | FTO/SnO2/Cs0.16FA0.84Pb(I0.88Br0.12)3/Spiro-OMeTAD/Au | [160] | |
19.1 | 1.01 | 22.4 | 0.78 | FTO/Poly-TPD/0.15 mol% Al3+-doped CH3NH3PbI3/PCBM/BCP/Ag | 2016 | [161] |
22.3 | 1.71 | 24.1 | 0.81 | ITO/PTAA/Cs0.05(FA0.92MA0.08)0.95Pb(I0.92Br 0.08)3/C60/BCP/Cu | 2020 | [162] |
23 | 1.16 | 24 | 0.82 | Glass/ITO/PTAA/(Cs0.05(FA5/MAI)0.95Pb(I0.9Br0.1)3)/PCBM/BCP/Ag | 2021 | [163] |
23.7 | 1.16 | 24.16 | 0.84 | Glass/ITO/PTAA/PEAI/(Cs0.05(FA5/MAI)0.95Pb(I0.9Br0.1)3)/PEAI/PCBM/BCP/Ag | 2021 | [164] |
24.6 | 1.05 | 25.5 | 0.83 | FTO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/P3HT/Au | 2023 | [165] |
24.8 | 1.16 | 26.35 | 0.8 | FTO/c-TiO2/m-TiO2/FAPbI3/Spiro-OMeTAD/Au | 2020 | [166] |
25.4 | 1.19 | 25.09 | 0.84 | FTO/SnO2/MAPbBr3/HTL/back contact | 2021 | [167] |
25.5 | 1.18 | 25.74 | 0.83 | FTO/SnO2-Cl/FAPbI3/Spiro-OMETAD/Au | 2021 | [168] |
Source | Conditions | Frequency | Power Density | Efficiency |
---|---|---|---|---|
DTV | 470–610 MHz | 0.89 nW/cm2 | ±50% | |
GSM (MT) | 880–915 MHz | 0.45 nW/cm2 | ±50% | |
GSM/4G LTE 900 (BT) | 920–960 MHz | 36 nW/cm2 | ±50% | |
RF (Average) [170] | GSM/4G LTE 1800 (MT) | 1710–1785 MHz | 0.5 nW/cm2 | ±50% |
GSM 1800 (BT) | 1805–1880 MHz | 84 nW/cm2 | ±50% | |
3G (MT) | 1710–1785 MHz | 0.46 nW/cm2 | ±50% | |
3G (BT) | 2110–2170 MHz | 12 nW/cm2 | ±50% | |
Wi-Fi | 2.4–2.5 GHz | 0.18 nW/cm2 | ±50% | |
4G LTE 2600 | 2500–2690 | 0.3 mW/cm2–0.000767 mW/m2 | ±50% |
Ref. | Frequency (GHz) | Max Conversion Efficiency (%) | Circuit Size (mm3) | Pin (dBm) | Max Gain (dBi) | Max Harvested DC Output Voltage (v) | Substrate | Distance (m) | Diode Type |
---|---|---|---|---|---|---|---|---|---|
[176] | 24 | 80 | 40 × 40 × 1.6 | 4.9 | 7.8 | 6.82 | FR-4 | 1.5 | Schottky CMOS |
[177] | 2.45 | 20 | 24.9 × 8.6 × 1.6 | −20 | 0.8 | 0.097 | FR-4 | 0.9 | HSMS-2852 Schottky |
[178] | 2.45 | - | 160 × 130 × 0.55 | –40 to 0 | 5 | [email protected] m; 1@2 m | Cordura fabric | 1.5 2 | HSMS-2862 Schottky |
[179] | 3.1–8 | 69 | 6.3 × 13 × 0.8 | −10 | 3.2 | - | FR-4 | 0.5 | SMS 7630 |
[180] | 1.975–4.744 | 88.58 | 40 × 45 × 1.6 | 0 | 4.3 | 10.703 | FR-4 | 2 | HSMS 270B Schottky |
[181] | 0.91–2.55 | 68 | 165 × 165 × 0.8 | −10 | 5 to 8.3 | 0.243 | FR-4 | - | HSMS-285C |
[182] | 1.7–3 | 60 | 178 × 148 × 0.813 | - | 9.902 | 3.7 | Roger RO4003C | 0.75 | SMS7630 |
[183] | 2.4 | 50 | 63.7 × 45.6 × 1.6 | −10 to 17 | 5.3 | 3 | FR-4 | 1–2.5 | HSMS 2850 and SMS7630 |
[184] | 2.1 and 3.3 | 76.3 | 31 × 18 × 1 | 4 to 16 | - | - | F4B | - | HSMS286 |
[185] | 2.4 | 69.3 | 4 × 11.7 × 1.6 | 5.2 | 5.9 | 3.5 | RO4003C | - | SMS7630 |
[186] | 2.45 | 19.5–44.6 | 150 × 80 × 4 | −9.48 | 8.53 | - | RO4003 | - | SMS7630 |
[187] | 2.45 and 3.6 | 59%@ 2.45; 41% @3.6 | 44 × 24.5 × 0.06 | 2 | [email protected]; [email protected] | - | Rogers R04003 | 0.65 | SMS-7630 |
[188] | 2.2 | 50 | 71 × 71 × 1.6 | 29 | 7.46 | 0.516 in parallel 1.087 in series | RT/duroid 5880 Rogers | 1 | SMS7621 |
[189] | 0.909 | 88 | 99.5 × 26 × 0.508 | −10 | 4.6 | 7 | Rogers 5880 | 1.2 | HSMS286C SMS7630 |
[190] | 20–26.5 | 70 | 32.6 × 16 × 4 | 27 | 8 | 6.5 | Textile | 0.12 | MA4E-1319 |
[191] | 0.915–2.4 | 80 | 115 × 15 × 1.4 | −7 | 2.3 | 1.8 | Textile | 4.2 | BAT15-04R |
[192] | 0.83 | 63 | - | −10 | 1.7 | 0.65 | Felt | 0.89 | SMS7630-079lf |
Diode Configuration | Nanoantenna | Operating Frequency (THz) | Maximum Responsivity (V−1) | Zero-Bias Responsivity (V−1) | Zero-Bias Resistance (Ω) |
---|---|---|---|---|---|
Exfoliated monolayer graphene-based arrowhead-shaped diode [234] | metal bowtie 15 nm Cr/40 nm Au | 28.3 | 0.2 for VDS = 1.5 V | 0.18 for VDS = 0 V | 13 K |
Exfoliated monolayer graphene-based arrowhead-shaped diode [235] | metal bowtie 15 nm Cr/40 nm Au | Up to 160 | 0.8 for VDS = 0.4 V | 0.3 for VDS = 0 V | 19 K |
Exfoliated monolayer graphene-based arrowhead-shaped diode [236] | metal bowtie 15 nm Cr/40 nm Au | 28.3 | 0.2 for VDS (V) = 1.4 V | 0.12 for VDS = 0 V | 3 K |
(CVD) monolayer graphene-based arrowhead-shaped diode [237] | metal bowtie Ti (10 nm)/Au (40 nm) | 28.3 | 0.3 for VDS (V) = 0.5 V | 0.1 for VDS (V) = 0 V | 5 K |
Z-shaped graphene geometric diodes [233] | - | 28.3 | 2.4 for V0 (V) = 0.5 V | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Citroni, R.; Mangini, F.; Frezza, F. Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions. Sensors 2024, 24, 4471. https://doi.org/10.3390/s24144471
Citroni R, Mangini F, Frezza F. Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions. Sensors. 2024; 24(14):4471. https://doi.org/10.3390/s24144471
Chicago/Turabian StyleCitroni, Rocco, Fabio Mangini, and Fabrizio Frezza. 2024. "Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions" Sensors 24, no. 14: 4471. https://doi.org/10.3390/s24144471
APA StyleCitroni, R., Mangini, F., & Frezza, F. (2024). Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions. Sensors, 24(14), 4471. https://doi.org/10.3390/s24144471