Design, Fabrication, and Dynamic Analysis of a MEMS Ring Resonator Supported by Twin Circular Curve Beams
Abstract
:1. Introduction
2. Equations of Motion of a Vibrating Ring Resonator
2.1. Kinetic and Potential Energy of the Ring
2.2. Kinetic and Potential Energy of the Spokes
2.3. Electrical Potential Energy of the Electrodes
2.4. Equation of Motion
3. Design of the Ring Resonator
4. Dynamic Analysis of the Designed Ring Resonator
4.1. Natural Frequency of the Ring Resonator
4.2. Pull-In Voltage Analysis
4.3. Resonance Frequency Shift
4.4. Harmonic Analysis of the Ring
5. Fabrication and Testing of Ring Resonator
5.1. Fabrication of the Ring Resonator
5.2. Testing of the Fabricated Ring
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Electrical Potential Energy
References
- Polunin, P.M.; Shaw, S.W. Self-induced parametric amplification in ring resonating gyroscopes. Int. J. Non-Linear Mech. 2017, 94, 300–308. [Google Scholar] [CrossRef]
- Gill, W.A.; Howard, I.; Mazhar, I.; McKee, K. Development of Starfish-Shaped Two-Ring Microelectromechanical Systems (MEMS) Vibratory Ring Gyroscope with C-Shaped Springs for Higher Sensitivity. Eng. Proc. 2022, 27, 36. [Google Scholar] [CrossRef]
- Wang, D.F.; Sagawa, T.; Lu, J.; Maeda, R. Analytical study on effect of ring geometry on frequency shift of piezoelectric ring-shaped resonator. Microsyst. Technol. 2012, 18, 773–778. [Google Scholar] [CrossRef]
- Liang, F.; Liang, D.-D.; Qian, Y.-J. Nonlinear Performance of MEMS Vibratory Ring Gyroscope. Acta Mech. Solida Sin. 2021, 34, 65–78. [Google Scholar] [CrossRef]
- Yoon, S.W.; Lee, S.; Najafi, K. Vibration sensitivity analysis of MEMS vibratory ring gyroscopes. Sens. Actuators A 2011, 171, 163–177. [Google Scholar] [CrossRef]
- Antonello, R.; Oboe, R.; Prandi, L.; Biganzoli, F. Automatic Mode Matching in MEMS Vibrating Gyroscopes Using Extremum-Seeking Control. IEEE Trans. Ind. Electron. 2009, 56, 3880–3891. [Google Scholar] [CrossRef]
- Amabili, M.; Paıdoussis, M.P. Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 2003, 56, 349–381. [Google Scholar] [CrossRef]
- Lu, T.; Tsouvalas, A.; Mertikine, A.V. The in-plane free vibration of an elastically supported thin ring rotating at high speeds revisited. J. Sound Vib. 2017, 402, 203–218. [Google Scholar] [CrossRef]
- Evensen, D.A. Nonlinear Flextural Vibrations of Thin Circular Rings. J. Appl. Mech. 1966, 33, 553–560. [Google Scholar] [CrossRef]
- Gallacher, B.J.; Hedley, J.; Burdess, J.S.; Harris, A.J.; Rickard, A.; King, D.O. Electrostatic Correction of Structural Imperfections Present in a Microring Gyroscope. J. Micromechanical Syst. 2005, 14, 221–234. [Google Scholar] [CrossRef]
- Sieberer, S.; McWilliam, S.; Popov, A. Nonlinear electrostatic effects in MEMS ring-based rate sensors under shock excitation shock excitation. Int. J. Mech. Sci. 2019, 157–158, 485–497. [Google Scholar] [CrossRef]
- Gebrel, I.F.; Wang, L.; Asokanthan, S.F. Dynamic Analysis and Design of a Novel Ring-Based Vibratory Energy Harvester. Vibration 2019, 2, 271–284. [Google Scholar] [CrossRef]
- Leissa, A.W. Non-linear Analysis of Plates and Shell Vibration. In Proceedings of the Second International Conference on Recent Advances in Structure Dynamics, Southampton, UK, 9–13 April 1984. [Google Scholar]
- Moussaoui, F.; Benamar, R. Non-linear Vibrations of Shell-type Structures: A Review with Bibliography. J. Sound Vib. 2002, 255, 161–184. [Google Scholar] [CrossRef]
- Polunin, P.; Yang, Y.; Atalaya, J.; Ng, E.; Strachan, S.; Shoshani, O.; Dykman, M.; Shaw, S.; Kenny, T. Characterizing MEMS Nonlinearities Directly: The Ring-down Measurements. In Proceedings of the 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015. [Google Scholar]
- Hu, Z.X.; Gallacher, B.J.; Burdess, J.S.; Bowles, S.R.; Grigg, H.D. A systematic approach for precision electrostatic mode tuning of a MEMS gyroscope. J. Micromechanics Microengineering 2014, 24, 125003. [Google Scholar] [CrossRef]
- Yu, T.; Kou, J.; Hu, Y.-C. Vibration of a Rotating Micro-Ring under Electrical Field Based on Inextensible Approximation. Sensors 2018, 14, 2044. [Google Scholar] [CrossRef] [PubMed]
- Asokanthan, S.F.; Cho, J. Dynamic stability of ring-based angular rate sensors. J. Sound Vib. 2006, 295, 571–583. [Google Scholar] [CrossRef]
- Timoshenko, S. Vibration Problems in Engineering, 2nd. ed.; D. Van Nostrand Company, Inc.: New York, NY, USA, 1937. [Google Scholar]
- Ranji, A.R.; Guo, J.; Alirezaee, S.; Ahamed, M.J. Modelling and dynamic analysis of a MEMS ring resonator supported by circular curved shaped inner beams. Phys. Scr. 2023, 98, 095227. [Google Scholar] [CrossRef]
- Acar, C.; Shkel, A. MEMS Vibratory Gyroscopes, Structural Approaches to Improve Robustness; Springer Science+Business Media, LLC: New York, NY, USA, 2009. [Google Scholar]
- Becker, R.A. Introduction to Theoretical Mechanics; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1954. [Google Scholar]
- Ranji, A.R.; Li, A.; Alirezaee, S.; Ahamed, M.J. Analytical modeling of an inclined folded-beam spring used in micromechanical resonator devices. Eng. Res. Express 2023, 5, 035016. [Google Scholar] [CrossRef]
- ANSYS. Advanced Analysis Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Zhang, S.; Zhang, W.-M.; Peng, Z.-K.; Meng, G. Dynamic Characteristics of Electrostatically Actuated Shape Optimized Variable Geometry Microbeam. Shock. Vib. 2015, 2015, 867171. [Google Scholar] [CrossRef]
- Fischer, M.; Giousouf, M.; Schaepperle, J.; Eichner, D.; Weinmann, M.; Munch, W.V.; Assmus, F. Electrostatically deflectable polysilicon micromirrors—Dynamic behaviour and comparison with the results from FEM modelling with ANSYS. Sens. Actuators A 1998, 67, 89–95. [Google Scholar] [CrossRef]
- Hu, Y.C.; Chang, C.M.; Huang, S.C. Some design considerations on the electrostatically actuated microstructures. Sens. Actuators A 2004, 112, 155–161. [Google Scholar] [CrossRef]
- Bao, M. Electrostatic Actuation. In Analysis and Design Principles of MEMS Devises; Elsevier Science: Amsterdam, The Netherlands, 2005; pp. 175–212. [Google Scholar]
- Mohamad, N.; Iovnitti, P.; Vinay, T. Effective Diaphragm Area of Spring-Supported Capacitive MEMS microphone Designs. In Proceedings of the SPIE Smart Materials, Nano- and Micro-Smart Systems, Melbourne, Australia, 9–12 December 2008; Smart Structures, Devices, and Systems IV. Volume 7268, p. 726805. [Google Scholar]
- Eley, R.; Fox, C.H.; McWilliam, S. Anisotropy Effects on the Vibration of Circular Rings Made from Crystalline Silicon. J. Sound Vib. 1999, 228, 11–35. [Google Scholar] [CrossRef]
- Shirin, G.; Ahn, C.; Ng, E.; Wang, S.; Kenny, T. Silicon Crystal Effects in Modeling of MEMS Silicon Resonators. In Proceedings of the NSTI-Nanotech 2012 NSTI Nanotechnology Conference and Expo, Santa Clara, CA, USA, 18–21 June 2012. [Google Scholar]
- Jia, J.; Ding, X.; Qin, Z.; Ruan, Z.; Li, W.; Liu, X.; Li, H. Overview and analysis of MEMS Coriolis vibratory ring gyroscope. Measurment 2021, 182, 109704. [Google Scholar] [CrossRef]
- Qin, Z.; Gao, Y.; Jia, J.; Ding, X.; Huang, L.; Li, H. The Effect of the Anisotropy of Single Crystal Silicon on the Frequency Split of Vibrating Ring Gyroscopes. Micromachines 2019, 10, 126. [Google Scholar] [CrossRef]
The central angle of electrodes, | 40 deg. |
The radius of anchor, | 100 µm |
Ring radius (mean), | 615 µm |
The radius of the spoke, | 450 µm |
The mean radius of the air gap, | 621.5 µm |
Width of spoke, | 10 µm |
Width of ring, | 10 µm |
Thickness of spoke, | 25 µm |
Thickness of ring, | 25 µm |
Air gap distance, | 3 µm |
Non-Dimensional Stiffness | Non-Dimensional Effective Mass | ||
---|---|---|---|
255.31 | 6.02 | 0.18 | 0.05 |
Material | Method | Drive Mode | Sense Mode |
---|---|---|---|
Silicon [111] | FEM | 4.31 | 4.31 |
Equation (19) | 4.88 | 4.88 | |
Silicon [100] | FEM | 4.52 | 4.63 |
Material | Method | ||
---|---|---|---|
Silicon [111] | FEM | 11.06 | 0.22 |
Equation (22) | 14.80 | 0.33 | |
Equation (23) | 17.75 | 0.58 | |
Silicon [100] | FEM | 10.33 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranji, A.R.; Nagesh, G.; Sun, F.; Ahamed, M.J. Design, Fabrication, and Dynamic Analysis of a MEMS Ring Resonator Supported by Twin Circular Curve Beams. Sensors 2024, 24, 4499. https://doi.org/10.3390/s24144499
Ranji AR, Nagesh G, Sun F, Ahamed MJ. Design, Fabrication, and Dynamic Analysis of a MEMS Ring Resonator Supported by Twin Circular Curve Beams. Sensors. 2024; 24(14):4499. https://doi.org/10.3390/s24144499
Chicago/Turabian StyleRanji, Ahmad Rahbar, Gnanesh Nagesh, Fangyan Sun, and Mohammed Jalal Ahamed. 2024. "Design, Fabrication, and Dynamic Analysis of a MEMS Ring Resonator Supported by Twin Circular Curve Beams" Sensors 24, no. 14: 4499. https://doi.org/10.3390/s24144499
APA StyleRanji, A. R., Nagesh, G., Sun, F., & Ahamed, M. J. (2024). Design, Fabrication, and Dynamic Analysis of a MEMS Ring Resonator Supported by Twin Circular Curve Beams. Sensors, 24(14), 4499. https://doi.org/10.3390/s24144499