The Influence of the Playing Surface on Workload Response in Spanish Professional Male Soccer Players
Abstract
:1. Introduction
2. Methods
2.1. Sample
2.2. Study Design
2.3. Procedure and Variables
2.3.1. External Load
2.3.2. Internal Load
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations and Future Directions
4.2. Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fédération Internationale de Football Association. FIFA Big Count 2006: 270 Million People Active in Football; Fédération Internationale de Football Association: Zurich, Switzerland, 2007. [Google Scholar]
- Llopis-Goig, R. The predominance of soccer in the sport and leisure habits of Spanish society. Sport. Soc. 2014, 17, 824–841. [Google Scholar] [CrossRef]
- Ramos, A.O.; Villén, R.T.; Hidalgo, J.L. Evolución Económica de los Clubes Españoles de Fútbol en Los Últimos 30 Años; Wanceulen SL: Seville, Spain, 2022. [Google Scholar]
- Ade, J.; Fitzpatrick, J.; Bradley, P.S. High-intensity efforts in elite soccer matches and associated movement patterns, technical skills and tactical actions. Information for position-specific training drills. J. Sports Sci. 2016, 34, 2205–2214. [Google Scholar] [CrossRef] [PubMed]
- Pons, E.; Ponce-Bordón, J.C.; Díaz-García, J.; Del Campo, R.L.; Resta, R.; Peirau, X.; García-Calvo, T. A longitudinal exploration of match running performance during a football match in the Spanish LaLiga: A four-season study. Int. J. Environ. Res. Public Health 2021, 18, 1133. [Google Scholar] [CrossRef]
- Allen, T.; Taberner, M.; Zhilkin, M.; Rhodes, D. Running more than before? The evolution of running load demands in the English Premier League. Int. J. Sports Sci. Coach. 2023, 19, 779–787. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Fortes, V.; Muyor, J.M. When and how do elite soccer players sprint in match play? A Longitudinal study in a professional soccer league. Res. Sports Med. 2023, 31, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.d.S.; García-Calvo, T.; Raya-González, J.; Ponce-Bordón, J.C.; Fatela, P.; Lobo-Triviño, D. Effects of contextual variables on match load in a professional soccer team attending to the different season periods. Sensors 2024, 24, 679. [Google Scholar] [CrossRef]
- Gonçalves, L.G.C.; Kalva-Filho, C.A.; Nakamura, F.Y.; Rago, V.; Afonso, J.; Bedo, B.L.d.S.; Aquino, R. Effects of match-related contextual factors on weekly load responses in professional Brazilian soccer players. Int. J. Environ. Res. Public Health 2020, 17, 5163. [Google Scholar] [CrossRef]
- Gabbett, T.J. The Training—Injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef]
- Oliveira, R.; Brito, J.; Martins, A.; Mendes, B.; Calvete, F.; Carriço, S.; Ferraz, R.; Marques, M.C. In-season training load quantification of one-, two- and three-game week schedules in a top European professional soccer team. Physiol. Behav. 2019, 201, 146–156. [Google Scholar] [CrossRef]
- Beato, M.; Coratella, G.; Stiff, A.; Iacono, A. Dello The validity and between-unit variability of GNSS units (STATSports Apex 10 and 18 Hz) for measuring distance and peak speed in team sports. Front. Physiol. 2018, 9, 01288. [Google Scholar] [CrossRef]
- Jiménez-Rubio, S.; Navandar, A.; Rivilla-García, J.; Paredes-Hernández, V.; Gómez-Ruano, M.-Á. Improvements in match-related physical performance of professional soccer players after the application of an on-field training program for hamstring injury rehabilitation. J. Sport. Rehabil. 2020, 29, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Raya-González, J.; Weston, M.; Yanci, J. Distribution of external load during acquisition training sessions and match play of a professional soccer team. J. Strength Cond. Res. 2021, 35, 3453–3458. [Google Scholar] [CrossRef] [PubMed]
- Nosek, P.; Brownlee, T.E.; Drust, B.; Andrew, M. Feedback of GPS training data within professional English soccer: A comparison of decision making and perceptions between coaches, players and performance staff. Sci. Med. Footb. 2021, 5, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulos, J.S.; Bettle, J.; Kosy, J.D. The Use of GPS and inertial devices for player monitoring in team sports: A review of current and future applications. Orthop. Rev. 2020, 12, 7863. [Google Scholar] [CrossRef] [PubMed]
- Diaz-García, J.; González-Ponce, I.; Ponce-Bordón, J.C.; López-Gajardo, M.Á.; Garcia-Calvo, T. Diseño y validación del cuestionario para valorar la carga mental en los deportes de equipo (CCMDE). Cuad. Psicol. Del Deporte 2021, 21, 138–145. [Google Scholar] [CrossRef]
- Smith, M.R.; Thompson, C.; Marcora, S.M.; Skorski, S.; Meyer, T.; Coutts, A.J. Mental fatigue and soccer: Current knowledge and future directions. Sports Med. 2018, 48, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The effects of mental fatigue on physical performance: A systematic review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Soh, K.G.; Mohammadi, A.; Wang, X.; Bin, Z.; Zhao, Z. Effects of mental fatigue on technical performance in soccer players: A systematic review with a meta-analysis. Front. Public Health 2022, 10, 922630. [Google Scholar] [CrossRef]
- Coutinho, D.; Gonçalves, B.; Travassos, B.; Wong, D.P.; Coutts, A.J.; Sampaio, J.E. Mental fatigue and spatial references impair soccer players’ physical and tactical performances. Front. Psychol. 2017, 8, 01645. [Google Scholar] [CrossRef]
- Coutinho, D.; Gonçalves, B.; Wong, D.P.; Travassos, B.; Coutts, A.J.; Sampaio, J. Exploring the effects of mental and muscular fatigue in soccer players’ performance. Hum. Mov. Sci. 2018, 58, 287–296. [Google Scholar] [CrossRef]
- Gantois, P.; Caputo Ferreira, M.E.; de Lima-Junior, D.; Nakamura, F.Y.; Batista, G.R.; Fonseca, F.S.; Fortes, L.d.S. Effects of mental fatigue on passing decision-making performance in professional soccer athletes. Eur. J. Sport. Sci. 2020, 20, 534–543. [Google Scholar] [CrossRef]
- Kunrath, C.A.; Cardoso, F.; Nakamura, F.Y.; Teoldo, I. Mental fatigue as a conditioner of the tactical and physical response in soccer players: A pilot study. Hum. Mov. 2018, 19, 16–22. [Google Scholar] [CrossRef]
- Rago, V.; Silva, J.R.; Brito, J.; Barreira, D.; Mohr, M.; Krustrup, P.; Rebelo, A.N. Switching between pitch surfaces: Practical applications and future perspectives for soccer training. J. Sports Med. Phys. Fit. 2019, 59, 510–519. [Google Scholar] [CrossRef]
- UEFA. FIFA Quality Concept: Handbook of Test Methods and Requirements for Artificial Turf Football Surfaces; UEFA: Nyon, Switzerland, 2005. [Google Scholar]
- Soligard, T.; Bahr, R.; Andersen, T.E. Injury risk on artificial turf and grass in youth tournament football. Scand. J. Med. Sci. Sports 2012, 22, 356–361. [Google Scholar] [CrossRef]
- Fuller, C.W.; Dick, R.W.; Corlette, J.; Schmalz, R. Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 1: Match injuries. Br. J. Sports Med. 2007, 41, i20–i26. [Google Scholar] [CrossRef]
- Kanaras, V.; Metazas, T.I.; Mandroukas, A.; Gissis, I.; Zaferidis, A.; Riganas, C.S.; Manolopoulos, E.; Paschalis, V.; Vrabas, I. The effect of natural and artificial grass on sprinting performance in young soccer players. Am. J. Sports Sci. 2014, 2, 1. [Google Scholar] [CrossRef]
- Modric, T.; Esco, M.; Perkovic, S.; Basic, Z.; Versic, S.; Morgans, R.; Sekulic, D. Artificial turf increases the physical demand of soccer by heightening match running performance compared with natural grass. J. Strength Cond. Res. 2023, 37, 2222–2228. [Google Scholar] [CrossRef]
- Brito, Â.; Roriz, P.; Silva, P.; Duarte, R.; Garganta, J. Effects of pitch surface and playing position on external load activity profiles and technical demands of young soccer players in match play. Int. J. Perform. Anal. Sport. 2017, 17, 902–918. [Google Scholar] [CrossRef]
- Andersson, H.; Ekblom, B.; Krustrup, P. Elite football on artificial turf versus natural grass: Movement patterns, technical standards, and player impressions. J. Sports Sci. 2008, 26, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Bailey, S.J.; Hammouda, O.; Trabelsi, K.; Merzigui, N.; El Abed, K.; Driss, T.; Hökelmann, A.; Ayadi, F.; Chtourou, H.; et al. Effects of playing surface on physical, physiological, and perceptual responses to a repeated-sprint ability test: Natural grass versus artificial turf. Int. J. Sports Physiol. Perform. 2019, 14, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Rey, E.; Padrón-Cabo, A.; Costa, P.B.; Barcala-Furelos, R. Effects of foam rolling as a recovery tool in professional soccer players. J. Strength. Cond. Res. 2019, 33, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Page, R.; Brogden, C.; Langley, B.; Greig, M. The influence of playing surface on the loading response to soccer-specific activity. J. Sport. Rehabil. 2020, 29, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Maddison, R.; Ni Mhurchu, C. Global Positioning System: A new opportunity in physical activity measurement. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.; Casamichana, D.; Calleja-González, J.; San Román, J.; Ostojic, S.M. Reliability and accuracy of 10 Hz GPS devices for short-distance exercise. J. Sports Sci. Med. 2011, 10, 233–243. [Google Scholar] [PubMed]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the Black Box: Applications and considerations for using GPS devices in sport. Int. J. Sports Physiol. Perform. 2017, 12, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Thornton, H.R.; Nelson, A.R.; Delaney, J.A.; Serpiello, F.R.; Duthie, G.M. Inter-unit reliability and effect of data-processing methods of Global Positioning Systems. Int. J. Sports Physiol. Perform. 2019, 14, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use of RPE-based training load in soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Bordón, J.C.; García-Calvo, T.; López-Gajardo, M.A.; Díaz-García, J.; González-Ponce, I. How does the manipulation of time pressure during soccer tasks influence physical load and mental fatigue? Psychol. Sport. Exerc. 2022, 63, 102253. [Google Scholar] [CrossRef]
- Díaz-García, J.; Pulido, J.; Ponce-Bordón, J.; Cano-Prado, C.; López-Gajardo, M.; García-Calvo, T. Coach encouragement during soccer practices can influence players’ mental and physical loads. J. Hum. Kinet. 2021, 79, 277–288. [Google Scholar] [CrossRef]
- R-Studio Team. RStudio: Integrated Development for R; RStudio: Boston, MA, USA, 2020. [Google Scholar]
- West, B.T.; Welch, K.B.; Gałecki, A.T.; Gillespie, B.W. Linear Mixed Models: A Practical Guide Using Statistical Softwar, 3rd ed.; Chapman and Hall: New York, NY, USA; CRC: New York, NY, USA, 2022; ISBN 9781003181064. [Google Scholar]
- Heck, R.H.; Thomas, S.L. An Introduction to Multilevel Modeling Techniques: MLM and SEM Approaches Using Mplus; Routledge: London, UK, 2020. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Roberts, J.; Osei-Owusu, P.; Harland, A.; Owen, A.; Smith, A. Elite football players’ perceptions of football turf and natural grass surface properties. Procedia Eng. 2014, 72, 907–912. [Google Scholar] [CrossRef]
- Bahdur, K.; Pruna, R.; Erasmus, H.; Pedret, C. Does cognition play a role in injury prevention and return to play in the elite football player? A perspective from the field. Apunts. Med. L’esport 2018, 53, 125–128. [Google Scholar] [CrossRef]
- Williams, S.; Hume, P.A.; Kara, S. A review of football injuries on third and fourth generation artificial turfs compared with natural turf. Sports Med. 2011, 41, 903–923. [Google Scholar] [CrossRef]
- Hughes, M.G.; Birdsey, L.; Meyers, R.; Newcombe, D.; Oliver, J.L.; Smith, P.M.; Stembridge, M.; Stone, K.; Kerwin, D.G. Effects of Playing surface on physiological responses and performance variables in a controlled football simulation. J. Sports Sci. 2013, 31, 878–886. [Google Scholar] [CrossRef]
- Taylor, A. An Analysis of External Load on Different Pitch Surfaces in Scottish Professional Football: Using Global Positioning System to Analyze Match Play and Training. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2019. [Google Scholar]
- Sanchez-Sanchez, J.; Martinez-Rodriguez, A.; Felipe, J.L.; Hernandez-Martin, A.; Ubago-Guisado, E.; Bangsbo, J.; Gallardo, L.; Garcia-Unanue, J. Effect of natural turf, artificial turf, and sand surfaces on sprint performance. A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 9478. [Google Scholar] [CrossRef]
- Luo, G.; Stefanyshyn, D. Identification of critical traction values for maximum athletic performance. Footwear Sci. 2011, 3, 127–138. [Google Scholar] [CrossRef]
- Villanueva, N.C.; Chun, I.K.; Fujiwara, A.S.; Leibovitch, E.R.; Yamamoto, B.E.; Yamamoto, L.G. Impact deceleration differences on natural grass versus synthetic turf high school football fields. Hawai’i J. Health Soc. Welf. 2024, 83, 4–9. [Google Scholar] [CrossRef]
Variables | Marginal R2 | Conditional R2 | ICC (CI95%) | Variance | SD |
---|---|---|---|---|---|
RPE | 0.03 | 0.28 | 0.26 (0.22, 1.29) | 0.56 | 0.75 |
Mental Load | 0.00 | 0.45 | 0.45 (0.61, 2.77) | 1.31 | 1.14 |
TD (m) | 0.15 | 0.19 | 0.05 (38,084.29, 273,096.20) | 115,329.92 | 339.60 |
TDmin (m·min−1) | 0.08 | 0.18 | 0.11 (7.57, 37.58) | 17.52 | 4.19 |
ACC (nº.) | 0.07 | 0.25 | 0.19 (36.68, 161.99) | 78.54 | 8.86 |
DEC (nº.) | 0.13 | 0.27 | 0.16 (22.21, 105.68) | 50.11 | 7.08 |
HMLD (m) | 0.06 | 0.15 | 0.10 (5806.51, 31,811.13) | 14,430.95 | 120.13 |
Variables | Marginal R2 | Conditional R2 | ICC (CI95%) | Variance | SD |
---|---|---|---|---|---|
MSR (m) | 0.02 | 0.11 | 0.09 (461.04, 2604.87) | 1169.88 | 34.20 |
HSR (m) | 0.01 | 0.05 | 0.04 (757.62, 7055.57) | 2810.12 | 53.01 |
VSHR (m) | 0.02 | 0.12 | 0.10 (287.77, 1624.74) | 727.39 | 26.97 |
Sprint (m) | 0.01 | 0.02 | 0.01 (0.00, 2012.22) | 563.95 | 23.75 |
Sprints (no.) | 0.02 | 0.12 | 0.10 (0.73, 4.16) | 1.87 | 1.37 |
Variables | Grass1 | Grass2 | 3G | p | η2 | d (CI95%) | ||
---|---|---|---|---|---|---|---|---|
Coeff (SE) | Coeff (SE) | Coeff (SE) | Grass1 vs. Grass2 | Grass1 vs. 3G | Grass2 vs. 3G | |||
RPE | 5.36 (0.22) | 5.93 (0.22) | 5.79 (0.29) | a *** | 0.03 | −0.38 (−0.63, −0.14) | −0.34 (−0.72, 0.04) | 0.04 (−0.34, 0.42) |
Mental Load | 4.99 (0.30) | 5.00 (0.30) | 5.24 (0.36) | 0.00 | −0.01 (−0.26, 0.23) | −0.21 (−0.59, 0.16) | −0.20 (−0.58, 0.18) | |
TD (m) | 5279 (137) | 5235 (105) | 3849 (129) | b ***, c *** | 0.15 | 0.03 (−0.15, 0.20) | 0.98 (0.77, 1.19) | 0.95 (0.78, 1.13) |
TDmin (m·min−1) | 60 (1.36) | 64.2 (1.13) | 55.2 (1.30) | a ***, b ***, c *** | 0.08 | −0.36 (−0.54, −0.18) | 0.35 (0.14, 0.56) | 0.71 (0.53, 0.88) |
ACC (nº.) | 49.7 (2.5) | 50.2 (2.23) | 37.5 (2.42) | b ***, c *** | 0.07 | −0.04 (−0.22, 0.14) | 0.60 (0.39, 0.81) | 0.64 (0.46, 0.81) |
DEC (nº.) | 41.3 (2.1) | 45.5 (1.82) | 28.7 (2.02) | a **, b ***, c *** | 0.13 | −0.24 (−0.42, −0.06) | 0.70 (0.50, 0.91) | 0.94 (0.77, 1.12) |
HMLD (m) | 821 (40.3) | 859 (33.2) | 622 (38.4) | b ***, c *** | 0.06 | −0.11 (−0.29, 0.06) | 0.50 (0.30, 0.71) | 0.62 (0.45, 0.79) |
Variables | Grass1 | Grass2 | 3G | p | η2 | d (CI95%) | ||
---|---|---|---|---|---|---|---|---|
Coeff (SE) | Coeff (SE) | Coeff (SE) | Grass1 vs. Grass2 | Grass1 vs. 3G | Grass2 vs. 3G | |||
MSR (m) | 176 (11.72) | 187 (9.56) | 150 (11.15) | b *, c *** | 0.02 | −0.14 (−0.32, 0.04) | 0.19 (−0.01, 0.40) | 0.33 (0.16, 0.50) |
HSR (m) | 164 (23) | 192 (17.3) | 221 (21.6) | b * | 0.01 | −0.13 (−0.31, 0.04) | −0.24 (−0.45, −0.04) | −0.11 (−0.28, 0.06) |
VSHR (m) | 79.9 (8.86) | 110.8 (7.36) | 95.9 (8.46) | a ***, c * | 0.03 | −0.41 (−0.59, −0.23) | −0.23 (−0.44, −0.02) | 0.18 (0.01, 0.35) |
Sprint (m) | 83.6 (16.8) | 82 (11.3) | 125 (15.7) | c * | 0.01 | 0.00 (−0.18, 0.18) | −0.21 (−0.41, 0.00) | −0.21 (−0.38, −0.04) |
Sprints (no.) | 3.49 (0.46) | 4.57 (0.38) | 5.48 (0.44) | a **, b ***, c * | 0.03 | −0.28 (−0.46, −0.10) | −0.49 (−0.70, −0.28) | −0.21 (−0.38, −0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce-Bordón, J.C.; Polo-Tejada, J.; Sanabria-Pino, B.; Rubio-Morales, A.; García-Calvo, T.; Lobo-Triviño, D. The Influence of the Playing Surface on Workload Response in Spanish Professional Male Soccer Players. Sensors 2024, 24, 4506. https://doi.org/10.3390/s24144506
Ponce-Bordón JC, Polo-Tejada J, Sanabria-Pino B, Rubio-Morales A, García-Calvo T, Lobo-Triviño D. The Influence of the Playing Surface on Workload Response in Spanish Professional Male Soccer Players. Sensors. 2024; 24(14):4506. https://doi.org/10.3390/s24144506
Chicago/Turabian StylePonce-Bordón, José C., Jorge Polo-Tejada, Borja Sanabria-Pino, Ana Rubio-Morales, Tomás García-Calvo, and David Lobo-Triviño. 2024. "The Influence of the Playing Surface on Workload Response in Spanish Professional Male Soccer Players" Sensors 24, no. 14: 4506. https://doi.org/10.3390/s24144506
APA StylePonce-Bordón, J. C., Polo-Tejada, J., Sanabria-Pino, B., Rubio-Morales, A., García-Calvo, T., & Lobo-Triviño, D. (2024). The Influence of the Playing Surface on Workload Response in Spanish Professional Male Soccer Players. Sensors, 24(14), 4506. https://doi.org/10.3390/s24144506