Data Analytics for Predicting Situational Developments in Smart Cities: Assessing User Perceptions
Abstract
:1. Introduction
- Development of algorithms for analyzing and interpreting social media data to assess citizens’ opinions in real time.
- Development of algorithms for verifying and examining social media data for analyzing social tension and predicting the development of situations during the implementation of urban projects.
- Testing the developed algorithms using the example of implementing an urban project in the field of transportation system development.
1.1. Related Work
1.1.1. Data Analytics
1.1.2. Predictive Analytics
1.1.3. Social Media Data Analysis
2. Materials and Methods
2.1. Data
2.2. Method
2.3. Tools
3. Results
3.1. Algorithm 1
- Negative cluster topic with the largest audience on Dzen (audience: 1,445,725): The introduction of new dedicated lanes for public transport and the expansion of paid parking zones are associated by actors with the construction project.
- Negative cluster topic with the largest audience on VKontakte (audience: 1,039,634): Residents believe that city authorities are dedicating too much attention and resources to developing the city’s transport system at the expense of other issues.
- Negative cluster topic with the largest audience on YouTube (audience: 258,000): Delays in the construction timeline.
- Negative cluster topic with the largest audience on Telegram (audience: 70,890): Restrictions on public transport movement due to the active construction phase.
- Traffic restrictions due to construction work (audience: 1,121,375).
- Destruction of the city’s green zones during construction (audience: 382,900).
- Poorly planned routes and connections of new transport lines (audience: 40,035).
3.2. Algorithm 2
- Construction work significantly reduces the quality of life for residents, destroys old neighborhoods, and complicates city navigation (audience: 4,780,036).
- Restrictions on public transport operations due to construction (audience: 1,121,375).
- Destruction of part of an old cemetery during construction (audience: 678,158).
- Residents believe that technical and safety requirements are being violated during construction (audience: 458,611).
- Details of the voting procedure for the color of new transport lines on city maps, where the color selection caused an aggressive reaction among some residents (audience: 458,611).
- Residents feel that city authorities are overly focused on transport projects while neglecting other city issues, such as homelessness (audience: 20,465).
- Social Stress Index: Measures the level of social tension and the prevalence of stress-inducing factors in public discourse. A high social stress index indicates increased public unrest and potential for conflict.
- Social Well-Being Index: Reflects the overall positive sentiment and contentment among residents. A high well-being index suggests a favorable perception of urban development and low levels of social stress.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belaïd, F.; Arora, A. (Eds.) Smart Cities. Social and Environmental Challenges and Opportunities for Local Authorities; Springer: Cham, Switzerland, 2024; p. 388. [Google Scholar]
- Nesmachnow, S.; Callejo, L.H. (Eds.) Smart Cities. In Proceedings of the 6th Ibero-American Congress, ICSC-Cities 2023, Mexico City and Cuernavaca, Mexico City, Mexico, 13–17 November 2023; Revised Selected Papers. Springer: Cham, Switzerland, 2024; p. 292. [Google Scholar]
- Mishra, P.; Singh, G. Sustainable Smart Cities. In Enabling Technologies, Energy Trends and Potential Applications; Springer: Cham, Switzerland, 2024; p. 241. [Google Scholar]
- Sushobhan, M.; Kandpal, V.S.; Anthopoulos, L.G. (Eds.) Smart Cities. Innovations, Challenges and Future Perspectives; Springer: Cham, Switzerland, 2024; p. 410. [Google Scholar]
- Adreani, L.; Bellini, P.; Bilotta, S.; Bologna, D.; Collini, E.; Fanfani, M.; Nesi, P. Smart City Scenario Editor for General What-If Analysis. Sensors 2024, 24, 2225. [Google Scholar] [CrossRef] [PubMed]
- Costi, D.; Leoni, G. (Eds.) Smart City: A Critical Assessment; Springer: Cham, Switzerland, 2024; p. 102. [Google Scholar]
- Kong, Y.; Xu, Z.; Mei, M. Cross-Domain Sentiment Analysis Based on Feature Projection and Multi-Source Attention in IoT. Sensors 2023, 23, 7282. [Google Scholar] [CrossRef] [PubMed]
- Bibri, S.E. (Ed.) Smart City Innovations: Navigating Urban Transformation with Sustainable Mobility; Springer: Cham, Switzerland, 2024; p. 212. [Google Scholar]
- Torre-Bastida, A.I.; Del Ser, J.; Laña, I.; Ilardia, M.; Bilbao, M.N.; Campos-Cordobés, S. Big Data for transportation and mobility: Recent advances, trends and challenges. IET Intell. Transp. Syst. 2018, 12, 742–755. [Google Scholar] [CrossRef]
- Bellini, P.; Bilotta, S.; Collini, E.; Fanfani, M.; Nesi, P. Data Sources and Models for Integrated Mobility and Transport Solutions. Sensors 2024, 24, 441. [Google Scholar] [CrossRef] [PubMed]
- Demirbaga, Ü.; Aujla, G.S.; Jindal, A.; Kalyon, O. Big Data Analytics. In Theory, Techniques, Platforms, and Applications; Springer: Cham, Switzerland, 2024; p. 284. [Google Scholar]
- Cuadrado-Gallego, J.J.; Demchenko, Y. Data Analytics. A Theoretical and Practical View from the EDISON Project; Springer: Cham, Switzerland, 2023; p. 477. [Google Scholar]
- Mishra, D.; Yang, X.S.; Unal, A.; Jat, D.S. Data Science and Big Data Analytics. Proceedings of IDBA 2023; Springer: Singapore, 2024; p. 747. [Google Scholar]
- Bhattacharya, A.; Dutta, S.; Dutta, P.; Samanta, D. Innovations in Data Analytics. Selected Papers of ICIDA 2023; Springer: Singapore, 2024; Volume 1, p. 426. [Google Scholar]
- Singh, P.; Mishra, A.R.; Garg, P. Data Analytics and Machine Learning. Navigating the Big Data Landscape; Springer: Singapore, 2024; p. 353. [Google Scholar]
- Sharma, N.; Goje, A.C.; Chakrabarti, A.; Bruckstein, A.M. Data Management, Analytics and Innovation. In Proceedings of the International Conference on Data Management, Analytics & Innovation, Vellore, India, 19–21 January 2024; Springer: Singapore, 2024; Volume 2, p. 429. [Google Scholar]
- Swaroop, A.; Polkowski, Z.; Correia, S.D.; Virdee, B. Proceedings of Data Analytics and Management. In Proceedings of the International Conference on Data Management, Analytics & Innovation 2023, Pune, India, 20–22 January 2023; Springer: Singapore, 2024; Volume 2, p. 665. [Google Scholar]
- Silhavy, R.; Silhavy, P. (Eds.) Data Analytics in System Engineering. In Proceedings of 7th Computational Methods in Systems and Software 2023; Springer: Cham, Switzerland, 2024; Volume 3, p. 460. [Google Scholar]
- Rao, U.P.; Alazab, M.; Gohil, B.N.; Chelliah, P.R. (Eds.) Security, Privacy and Data Analytics. In Proceedings of the 2nd International Conference, ISPDA 2022 426, Surat, India, 13–15 December 2022; Springer: Singapore, 2023; p. 426. [Google Scholar]
- Galatro, D.; Dawe, S. Data Analytics for Process Engineers. Prediction, Control and Optimization; Springer: Cham, Switzerland, 2024; p. 145. [Google Scholar]
- Gressner, A.M.; Arndt, T. (Eds.) Direct Analysis in Real Time. In Lexikon der Medizinischen Laboratoriumsdiagnostik; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Venkatesan, R.; Tandon, A.; D’Asaro, E.; Atmanand, M.A. (Eds.) Observing the Oceans in Real Time; Springer: Cham, Switzerland, 2018; p. 323. [Google Scholar] [CrossRef]
- Mizera-Pietraszko, J.; Pichappan, P.; Mohamed, L. (Eds.) Lecture Notes in Real-Time Intelligent Systems; Springer: Cham, Switzerland, 2019; p. 526. [Google Scholar] [CrossRef]
- Datta, D.; Hosseinzadeh, A.Z.; Cui, R.; di Scalea, F.L. High-Speed 3D Railroad Tie Deflection Mapping in Real-Time Using an Array of Air-Coupled Non-contact Transducers. In European Workshop on Structural Health Monitoring; EWSHM 2022. Lecture Notes in Civil Engineering; Rizzo, P., Milazzo, A., Eds.; Springer: Cham, Switzerland, 2023; Volume 254. [Google Scholar] [CrossRef]
- Sharma, N.; Mangla, M.; Shinde, S.K. Big Data Analytics in Intelligent IoT and Cyber-Physical Systems; Springer: Singapore, 2024; p. 343. [Google Scholar]
- Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Kavita; Ijaz, M.F.; Woźniak, M. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases. Sensors 2021, 21, 4749. [Google Scholar] [CrossRef] [PubMed]
- Schintler, L.A.; McNeely, C.L. Encyclopedia of Big Data; Springer: Cham, Switzerland, 2022; p. 976. [Google Scholar]
- Alhajj, R.; Rokne, J. Encyclopedia of Social Network Analysis and Mining, 2nd ed.; Springer: New York, NY, USA, 2014; p. 2437. [Google Scholar]
- Wang, Z.; Yang, Y.; Pei, J.; Chen, E. Activity maximization by effective information diffusion in social networks. IEEE Trans. Knowl. Data Eng. 2017, 29, 2374–2387. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, C.; Chen, J. Post and repost: A holistic view of budgeted influence maximization. Neurocomputing 2019, 338, 92–100. [Google Scholar] [CrossRef]
- Seargeant, P.; Tagg, C. The Language of Social Media. Identity and Community on the Internet; Palgrave Macmillan: London, UK, 2014; p. 324. [Google Scholar]
- Hayes, R.A.; Smock, A.; Carr, C.T. Face[book] management: Self-presentation of political views on social media. Commun. Stud. 2015, 66, 549–568. [Google Scholar] [CrossRef]
- Kramer, A.D.I.; Guillory, J.; Hancock, J.T. Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl. Acad. Sci. USA 2014, 111, 8788–8790. [Google Scholar] [CrossRef] [PubMed]
- Colleoni, E.; Rozza, A.; Arvidsso, A. Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. J. Commun. 2014, 64, 317–332. [Google Scholar] [CrossRef]
- Williams, H.T.P.; McMurray, J.R.; Kurz, T.; Lambert, F.H. Network analysis reveals open forums and echo chambers in social media discussions of climate change. Glob. Environ. Chang. 2015, 32, 126–138. [Google Scholar] [CrossRef]
- Bharathi, S.; Kempe, D.; Salek, M. Competitive Influence Maximization in Social Networks. In Internet and Network Economics; WINE 2007. Lecture Notes in Computer Science. 4858; Deng, X., Graham, F.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 306–311. [Google Scholar]
- Yang, W.; Chen, S.; Gao, S.; Yan, R. Boosting node activity by recommendations in social networks. J. Comb. Optim. 2020, 40, 825–847. [Google Scholar] [CrossRef]
- Jansen, B.J.; Aldous, K.K.; Salminen, J.; Almerekhi, H.; Jung, S.-G. Understanding Audiences, Customers, and Users via Analytics. In An Introduction to the Employment of Web, Social, and Other Types of Digital People Data; Springer: Cham, Switzerland, 2024; p. 345. [Google Scholar]
- Rafajac, O.; JakupovićIntegral, A. Communication and Digital Identity; Palgrave Macmillan: Cham, Switzerland, 2024; p. 123. [Google Scholar]
- Benedek, C. Multi-Level Bayesian Models for Environment Perception; Springer: Cham, Switzerland, 2024; p. 202. [Google Scholar]
- French, R.; Brogaard, B. (Eds.) The Roles of Representation in Visual Perception; Springer: Cham, Switzerland, 2024; p. 479. [Google Scholar]
- Holt, L.L.; Peelle, J.E.; Coffin, A.B.; Popper, A.N.; Fay, R.R. Speech Perception; Springer: Cham, Switzerland, 2022; p. 252. [Google Scholar]
- Tailer, G.R.; Dale, R.; Kreuz, R.J.; Tollefsen, D. How Do Different Types of Alignment Affect Perceived Entity Status? J. Psycholinguist. Res. 2019, 48, 961–985. [Google Scholar]
- Demuth, K. Perception, production, and individual differences. Appl. Psycholinguist. 2018, 39, 735–741. [Google Scholar] [CrossRef]
- Kreyßig, N.; Krautz, A.E. Lying and perception of lies by bilingual speakers. Appl. Psycholinguist. 2019, 40, 1313–1329. [Google Scholar] [CrossRef]
- Phani, K.P.; Selvaraj, A.; Male, S.R.; Mishra, S. Sensory Perception in Blind Bilinguals and Monolinguals. J. Psycholinguist. Res. 2020, 49, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Essam, B.; Abdo, M.S. How Do Arab Tweeters Perceive the COVID-19 Pandemic? J. Psycholinguist. Res. 2021, 50, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Uhrig, S. Human Information Processing in Speech Quality Assessment; Springer: Cham, Switzerland, 2021; p. 265. [Google Scholar]
- Kharlamov, A.A.; Raskhodchikov, A.N.; Pilgun, M. Smart City Data Sensing during COVID-19: Public Reaction to Accelerating Digital Transformation. Sensors 2021, 21, 3965. [Google Scholar] [CrossRef] [PubMed]
- Kharlamov, A.A.; Pilgun, M. (Eds.) Neuroinformatics and Semantic Representations. In Theory and Applications; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020; p. 317. [Google Scholar]
- Kharlamov, A.A.; Pilgun, M. Perception of the Situation: Social Stress and Well-Being Indices. In Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023; Volume 544, pp. 778–790. [Google Scholar] [CrossRef]
- Margaria, T.; Steffen, B. (Eds.) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. In Proceedings of the 11th International Symposium, ISoLA 2022, Rhodes, Greece, 22–30 October 2022; Proceedings, Part III. Springer: Cham, Switzerland, 2022; p. 474. [Google Scholar]
- Silva, A.; Rustan, K.; Leino, M. (Eds.) Computer Aided Verification. In Proceedings of the 33rd International Conference, CAV 2021, Virtual Event, 20–23 July 2021; Proceedings, Part I. Springer: Cham, Switzerland, 2021; p. 922. [Google Scholar]
- Sankaranarayanan, S.; Sharygina, N. Tools and Algorithms for the Construction and Analysis of Systems. In Proceedings of the 29th International Conference, TACAS 2023, Paris, France, 22–27 April 2023; Proceedings, Part I. Springer: Cham, Switzerland, 2023; p. 708. [Google Scholar]
- Qiu, M.; Lu, Z.; Zhang, C. Smart Computing and Communication; Springer: Cham, Switzerland, 2023; p. 708. [Google Scholar]
- Shakya, S.; Du, K.-L.; Ntalianis, K. (Eds.) Sentiment Analysis and Deep Learning. In Proceedings of the 2nd International Conference on Sentimental Analysis and Deep Learning ICSADL, 2022, Hat Yai, Thailand, 16–17 June 2022; Springer: Singapore, 2023; p. 1014. [Google Scholar]
- Sangiorgio, V.; Vargas, L.G.; Fatiguso, F.; Fiorito, F. New Approaches for Multi-Criteria Analysis in Building Constructions. In User-Reporting and Augmented Reality to Support the Investigation; Springer: Cham, Switzerland, 2022; p. 140. [Google Scholar]
- Vivas, L.; Manoiloff, L.; García, A.M.; Lizarralde, F.; Vivas, J. Core Semantic Links or Lexical Associations: Assessing the Nature of Responses in Word. J. Psycholinguist. Res. 2019, 48, 243–256. [Google Scholar] [CrossRef] [PubMed]
- File, B.; Keczer, Z.; Vancsó, A.; Bőthe, B.; Tóth-Király, I.; Hunyadi, M.; Ujhelyi, A.; Ulbert, I.; Góth, J.; Orosz, G. Emergence of polarized opinions from free association networks. Behav. Res. Methods 2019, 51, 280–294. [Google Scholar] [CrossRef] [PubMed]
Activities | Number |
---|---|
Audience | 216,939,884 |
Engagement | 254,485 |
Loyalty | 1,9 |
Digital Platform | Audience | Tokens |
---|---|---|
VKontakte | 96,978,637 | 13,728,752 |
Telegram | 45,657,499 | 2,944,209 |
Dzen | 39,328,334 | 2,313,912 |
Youtube | 13,962,831 | 1,222,741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharlamov, A.A.; Pilgun, M. Data Analytics for Predicting Situational Developments in Smart Cities: Assessing User Perceptions. Sensors 2024, 24, 4810. https://doi.org/10.3390/s24154810
Kharlamov AA, Pilgun M. Data Analytics for Predicting Situational Developments in Smart Cities: Assessing User Perceptions. Sensors. 2024; 24(15):4810. https://doi.org/10.3390/s24154810
Chicago/Turabian StyleKharlamov, Alexander A., and Maria Pilgun. 2024. "Data Analytics for Predicting Situational Developments in Smart Cities: Assessing User Perceptions" Sensors 24, no. 15: 4810. https://doi.org/10.3390/s24154810
APA StyleKharlamov, A. A., & Pilgun, M. (2024). Data Analytics for Predicting Situational Developments in Smart Cities: Assessing User Perceptions. Sensors, 24(15), 4810. https://doi.org/10.3390/s24154810