LPDi GAN: A License Plate De-Identification Method to Preserve Strong Data Utility
Abstract
:1. Introduction
- Complete Privacy Protection: The proposed LP de-identification method (LPDi GAN) achieves complete privacy protection, ensuring that the generated LP information cannot be traced back to individuals.
- Adaptability and Controllability: LPDi GAN is adaptable to various LP templates, ambient light conditions, and geometric variations, such as different angles, shapes, and sizes. This adaptability ensures that the method provides controllability of LP characters, background perception, and geometric adjustability.
- Data Utility Preservation: Character recognition experiments conducted using the same detector on both the original and de-identified datasets yielded similar results. This indicates that our method effectively preserved the dataset’s utility after de-identification.
2. Materials and Methods
2.1. Materials
2.2. Architecture of LPDi GAN
2.3. Model Training
3. Results and Discussion
3.1. Ablation Study
3.2. Effectiveness of Network Structure
3.2.1. Controllability of Character Generation
3.2.2. Background Perception
3.2.3. Angle Adjustment Capability
3.2.4. Adaptability to Different Size
3.3. Evaluation of Similarity
3.4. Data Availability
3.5. Practicality of the Proposed Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribaric, S.; Ariyaeeinia, A.; Pavesic, N. De-identification for privacy protection in multimedia content: A survey. Signal Process Image Comm. 2016, 47, 131–151. [Google Scholar] [CrossRef]
- Brkić, K.; Hrkać, T.; Kalafatić, Z. Protecting the privacy of humans in video sequences using a computer vision-based de-identification pipeline. Expert Syst. Appl. 2017, 87, 41–55. [Google Scholar] [CrossRef]
- Bhatti, D.M.S.; Choi, B.J. Enhancing IoT healthcare with federated learning and variational autoencoder. Sensors 2024, 24, 3632. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, K.; Zheng, Z.; Guo, J.; Zhao, X.; Zhang, S. Privshieldros: An extended robot operating system integrating ethereum and interplanetary file system for enhanced sensor data privacy. Sensors 2024, 24, 3241. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Sun, L.; Cai, M. Quantifying privacy vulnerability of individual mobility traces: A case study of license plate recognition data. Transp. Res. Part C Emerg. Technol. 2019, 104, 78–94. [Google Scholar] [CrossRef]
- Asghar, M.N.; Kanwal, N.; Lee, B.; Fleury, M.; Herbst, M.; Qiao, Y. Visual surveillance within the EU general data protection regulation: A technology perspective. IEEE Access 2019, 7, 111709–111726. [Google Scholar] [CrossRef]
- Cui, S.; Qi, P. The legal construction of personal information protection and privacy under the Chinese Civil Code. Comput. Law. Secur. Rev. 2021, 41, 105560. [Google Scholar] [CrossRef]
- Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous driving: A survey. IEEE Trans. Intell. Transp. 2022, 23, 4909–4926. [Google Scholar] [CrossRef]
- Nazat, S.; Arreche, O.; Abdallah, M. On evaluating black-box explainable AI methods for enhancing anomaly detection in autonomous driving systems. Sensors 2024, 24, 3515. [Google Scholar] [CrossRef]
- Ušinskis, V.; Makulavičius, M.; Petkevičius, S.; Dzedzickis, A.; Bučinskas, V. Towards autonomous driving: Technologies and data for vehicles-to-everything communication. Sensors 2024, 24, 3411. [Google Scholar] [CrossRef]
- Paniego, S.; Shinohara, E.; Cañas, J. Autonomous driving in traffic with end-to-end vision-based deep learning. Neurocomputing 2024, 594, 127874. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, L.; Huang, Q.; Liu, X.; Xing, X.; Li, X. A self-driving solution for resource-constrained autonomous vehicles in parked areas. High-Confid. Comput. 2024, 4, 100182. [Google Scholar] [CrossRef]
- Khan, S.D.; Ullah, H. A survey of advances in vision-based vehicle re-identification. Comput. Vis. Image Und. 2019, 182, 50–63. [Google Scholar] [CrossRef]
- Lv, K.; Han, S.; Lin, Y. Identity-guided spatial attention for vehicle re-identification. Sensors 2023, 23, 5152. [Google Scholar] [CrossRef]
- Hu, W.; Zhan, H.; Shivakumara, P.; Pal, U.; Lu, Y. TANet: Text region attention learning for vehicle re-identification. Eng. Appl. Artif. Intel. 2024, 133, 108448. [Google Scholar] [CrossRef]
- Li, J.; Yu, C.; Shi, J.; Zhang, C.; Ke, T. Vehicle re-identification method based on Swin-Transformer network. Array 2022, 16, 100255. [Google Scholar] [CrossRef]
- Zhang, H.; Kuang, Z.; Cheng, L.; Liu, Y.; Ding, X.; Huang, Y. AIVR-Net: Attribute-based invariant visual representation learning for vehicle re-identification. Knowl. Based Syst. 2024, 289, 111455. [Google Scholar] [CrossRef]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 July 2016; pp. 3213–3223. [Google Scholar]
- Lin, C.; Chiu, Y.; Ng, H.; Shih, T.K.; Lin, K. Global-and-local context network for semantic segmentation of street view images. Sensors 2020, 20, 2907. [Google Scholar] [CrossRef]
- Bordes, J.B.; Davoine, F.; Xu, P.; Denoeux, T. Evidential grammars: A compositional approach for scene understanding. Appl. Soft Comput. 2017, 61, 1173–1185. [Google Scholar] [CrossRef]
- Guan, F.; Fang, Z.; Wang, L.; Zhang, X.; Zhong, H.; Huang, H. Modelling people’s perceived scene complexity of real-world environments using street-view panoramas and open geodata. ISPRS J. Photogramm. 2022, 186, 315–331. [Google Scholar] [CrossRef]
- Su, C.; Hu, X.; Meng, Q.; Zhang, L.; Shi, W.; Zhao, M. A multimodal fusion framework for urban scene understanding and functional identification using geospatial data. Int. J. Appl. Earth Obs. 2024, 127, 103696. [Google Scholar] [CrossRef]
- Yu, J.; Xue, H.; Liu, B.; Wang, Y.; Zhu, S.; Ding, M. Gan-based differential private image privacy protection framework for the internet of multimedia things. Sensors 2020, 21, 58. [Google Scholar] [CrossRef] [PubMed]
- Che, Z.; Li, G.; Li, T.; Jiang, B.; Shi, X.; Zhang, X.; Lu, Y.; Wu, G.; Liu, Y.; Ye, J. D2-City: A Large-Scale Dashcam Video Dataset of Diverse Traffic Scenarios. arXiv 2019, arXiv:1904.01975. [Google Scholar]
- Guo, L.; Ge, P.; Shi, Z. Multi-object trajectory prediction based on lane information and generative adversarial network. Sensors 2024, 24, 1280. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, M.; Jiang, Q.; Li, G. VRID-1: A Basic Vehicle Re-Identification Dataset for Similar Vehicles. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems, Yokohama, Japan, 16–19 October 2017; pp. 1–8. [Google Scholar]
- Zakria, J.; Deng, J.; Hao, Y.; Khokhar, M.S.; Kumar, R.; Cai, J.; Kumar, J.; Aftab, M.U. Trends in vehicle re-identification past, present, and future: A comprehensive review. Mathematics 2021, 9, 3162. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Ma, H.; Fu, H. Large-scale Vehicle Re-Identification in Urban Surveillance Videos. In Proceedings of the 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [Google Scholar]
- Yang, L.; Luo, P.; Chen, C.L.; Tang, X. A Large-Scale Car Dataset for Fine-Grained Categorization and Verification. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3973–3981. [Google Scholar]
- Buzzelli, M.; Segantin, L. Revisiting the compcars dataset for hierarchical car classification: New annotations, experiments, and results. Sensors 2021, 21, 596. [Google Scholar] [CrossRef] [PubMed]
- Frome, A.; Cheung, G.; Abdulkader, A.; Zennaro, M.; Wu, B.; Bissacco, A.; Adam, H.; Neven, H.; Vincent, L. Large-Scale Privacy Protection in Google Street View. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2373–2380. [Google Scholar]
- Du, L.; Ling, H. Preservative License Plate de-Identification for Privacy Protection. In Proceedings of the 2011 International Conference on Document Analysis and Recognition, Beijing, China, 18–21 September 2011; pp. 468–472. [Google Scholar]
- Xue, M.; Sun, S.; Wu, Z.; He, C.; Wang, J.; Liu, W. SocialGuard: An adversarial example based privacy-preserving technique for social images. J. Inf. Secur. Appl. 2021, 63, 102993. [Google Scholar] [CrossRef]
- Liu, X.; Xie, L.; Wang, Y.; Zou, J.; Xiong, J.; Ying, Z.; Vasilakos, A.V. Privacy and security issues in deep learning: A survey. IEEE Access 2020, 9, 4566–4593. [Google Scholar] [CrossRef]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Proc. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE Access 2019, 7, 36322–36333. [Google Scholar] [CrossRef]
- Tran, N.T.; Tran, V.H.; Nguyen, N.B.; Nguyen, T.K.; Cheung, N.M. On data augmentation for gan training. IEEE T. Image Process. 2021, 30, 1882–1897. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, A.; Lebedev, R.; Khanzhina, N. On realistic generation of new format license plate on vehicle images. Procedia Comput. Sci. 2021, 193, 190–199. [Google Scholar] [CrossRef]
- Liu, S.; Guo, H.; Hu, J.G.; Zhao, X.; Zhao, C.; Wang, T.; Zhu, Y.; Wang, J.; Tang, M. A novel data augmentation scheme for pedestrian detection with attribute preserving GAN. Neurocomputing 2020, 401, 123–132. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, F.; Xu, Y.; Ling, H. Privacy-protective-GAN for privacy preserving face de-identification. JCST 2019, 34, 47–60. [Google Scholar] [CrossRef]
- Song, J.; Jin, Y.; Li, Y.; Lang, C. Learning Structural Similarity with Evolutionary-Gan: A New Face De-Identification Method. In Proceedings of the 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC), Beijing, China, 28–30 October 2019; pp. 1–6. [Google Scholar]
- Wen, Y.; Liu, B.; Ding, M.; Xie, R.; Song, L. Identitydp: Differential private identification protection for face images. Neurocomputing 2022, 501, 197–211. [Google Scholar] [CrossRef]
- Kuang, Z.; Guo, Z.; Fang, J.; Yu, J.; Babaguchi, N.; Fan, J. Unnoticeable synthetic face replacement for image privacy protection. Neurocomputing 2021, 457, 322–333. [Google Scholar] [CrossRef]
- Lin, J.; Li, Y.; Yang, G. FPGAN: Face de-identification method with generative adversarial networks for social robots. Neural Netw. 2021, 133, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, V.; Kumar, D.; Kaur, A. GAN-Based Synthetic Data Augmentation for Increased CNN Performance in Vehicle Number Plate Recognition. In Proceedings of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020; pp. 1190–1195. [Google Scholar]
- Hamdi, A.; Chan, Y.K.; Koo, V.C. A New Image Enhancement and Super Resolution technique for license plate recognition. Heliyon 2021, 7, e08341. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, S.; Xu, L.; Luo, B. Multi-ColorGAN: Few-shot vehicle recoloring via memory-augmented networks. J. Vis. Commun. Image Represent. 2021, 80, 103317. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H.; Ying, C.; Huang, L. Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline. In Proceedings of the 2018 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 261–277. [Google Scholar]
Baseline | Baseline + EBP | Baseline + LPSE | LPDi GAN | |
---|---|---|---|---|
LPIPS | 0.33 | 0.26 | 0.26 | 0.25 |
Level | Average Value | |
---|---|---|
Synthetic | Ground Truth | |
Lower | 70 | 73 |
Normal | 58 | 59 |
Higher | 37 | 29 |
Mean Blur | Median Blur | Gaussian Blur | Motion Blur | Obscured | Proposed | |
---|---|---|---|---|---|---|
LPIPS | 0.34 | 0.27 | 0.34 | 0.34 | 0.55 | 0.25 |
Original Dataset | De-Identification Dataset | |
---|---|---|
Accuracy | 97.16% | 97.62% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, H.; Lin, Q.; Sun, Q.; Jiang, Q.; Su, S. LPDi GAN: A License Plate De-Identification Method to Preserve Strong Data Utility. Sensors 2024, 24, 4922. https://doi.org/10.3390/s24154922
Li X, Liu H, Lin Q, Sun Q, Jiang Q, Su S. LPDi GAN: A License Plate De-Identification Method to Preserve Strong Data Utility. Sensors. 2024; 24(15):4922. https://doi.org/10.3390/s24154922
Chicago/Turabian StyleLi, Xiying, Heng Liu, Qunxiong Lin, Quanzhong Sun, Qianyin Jiang, and Shuyan Su. 2024. "LPDi GAN: A License Plate De-Identification Method to Preserve Strong Data Utility" Sensors 24, no. 15: 4922. https://doi.org/10.3390/s24154922
APA StyleLi, X., Liu, H., Lin, Q., Sun, Q., Jiang, Q., & Su, S. (2024). LPDi GAN: A License Plate De-Identification Method to Preserve Strong Data Utility. Sensors, 24(15), 4922. https://doi.org/10.3390/s24154922