The Focusing Properties of a Modular All-Metal Lens in the Near-Field Region
Abstract
:1. Introduction
2. Lens Design
2.1. Unit Current Analysis
2.2. Near-Field Energy Focusing
2.3. Phase Quantization Analysis
3. Experiment
3.1. Experimental System Construction
3.2. Results Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.C.; Staliunas, K. Near field Flat Focusing Mirrors. Appl. Phys. Rev. 2018, 5, 011101. [Google Scholar] [CrossRef]
- Janani, A.S.; Darvazehban, A.; Rezaeieh, S.A.; Abbosh, A.M. Focused Planar Electromagnetic Waves for Enhanced Near field Microwave Imaging with Verification Using Tapered Gradient-Index Lens Antenna. IEEE Access 2022, 10, 86920–86934. [Google Scholar] [CrossRef]
- Elsherif, M.; Alam, F.; Salih, A.E.; AlQattan, B.; Yetisen, A.K.; Butt, H. Wearable Bifocal Contact Lens for Continual Glucose Monitoring Integrated with Smartphone Readers. Small 2021, 17, 2102876. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Cai, Z.; Tang, P.; Li, B. Design of a polarization-multiplexed, high-resolution, near fieldfocusing metasurface lens. Appl. Opt. 2024, 63, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Zhou, M.; Gu, Q.; Jiang, X.; Ying, Y.; Si, G. Metamaterial Lensing Devices. Molecules 2019, 24, 2460. [Google Scholar] [CrossRef] [PubMed]
- Tuloti, S.H.R.; Rezaei, P.; Hamedani, F.T. High-Efficient Wideband Transmitarray Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 817–820. [Google Scholar] [CrossRef]
- Zhao, X.H.; Liu, M.Q.; Sun, Y.F.; Xu, L.; Zhang, Q.; Yuan, C.W.; Zhang, J. Design and Experimental Demonstration of a Beam Scanning Lens Antenna. Rev. Sci. Instrum. 2022, 93, 084703. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wang, W.; Huang, G.L.; Luo, Q.; Zhang, H.A. Wideband Low-Profile All-Metal Cavity Slot Antenna with Filtering Performance for Space-Borne SAR Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1278–1282. [Google Scholar] [CrossRef]
- Ji, S.; Hirokawa, J.; Tomura, T.A. Wideband and High-Gain All-Metallic Perpendicular-Corporate-Fed Multi-Layered Parallel-Plate Slot Array Antenna. IEEE Access 2022, 10, 38000–38011. [Google Scholar] [CrossRef]
- Kim, I.S.; Lee, C.H.; Choi, S.Y.; Kim, J.Y. Single-Polarized Wideband Array Antenna of All-Metal Structure with Modified TSA Elements. Microw. Opt. Technol. Lett. 2017, 59, 2445–2449. [Google Scholar] [CrossRef]
- Torres, V.; Orazbayev, B.; Pacheco-Pena, V.; Teniente, J.; Beruete, M.; Navarro-Cia, M.; Ayza, M.S.; Engheta, N. Experimental Demonstration of a Millimeter-Wave Metallic ENZ Lens Based on the Energy Squeezing Principle. IEEE Trans. Antennas Propag. 2015, 63, 231–239. [Google Scholar] [CrossRef]
- Ebrahimzadeh, R.; Hosseininejad, S.E.; Zakeri, B.; Darvish, A.A.; Khalily, M.; Tafazolli, R. Ultra-Compact 60-GHz Near field Focusing Configuration Using SIW Slot Array Loaded by Transmission Coding Metasurface Lens. IEEE Trans. Antennas Propag. 2024, 72, 630090. [Google Scholar] [CrossRef]
- Wang, J.; Duan, J.; Shen, X.; Wang, Y.; Zhang, B. Miniaturized Lens Antenna with Enhanced Gain and Dual-Focusing for Millimeter-Wave Radar System. Micromachines 2024, 15, 335. [Google Scholar] [CrossRef] [PubMed]
- Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Mandal, K. All-Metal Wideband Metasurface for near field Transformation of Medium-to-High Gain Electromagnetic Sources. Sci. Rep. 2021, 11, 9421. [Google Scholar] [CrossRef] [PubMed]
- Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. All-Metal Wideband Frequency-Selective Surface Bandpass Filter for TE and TM Polarizations. IEEE Trans. Antennas Propag. 2022, 70, 2790–2800. [Google Scholar] [CrossRef]
- He, L.; Lv, J.F.; Ding, C.; Yu, Y.; Meng, F.Y.; Zhu, Z.; Li, X.; Xu, S.S.; Ding, J.B.; Zhao, B.; et al. All-Metallic near field Convergent Lens Design Using Cross-Jerusalem-Slot Elements. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23021. [Google Scholar] [CrossRef]
- Zheng, P.; Ding, J.; Fei, D.; Zhang, J.; Ai, B.; Li, X.; Jin, S.; Cui, T. Field trial measurement and channel modeling for reconfigurable intelligent surface. Digit. Commun. Netw. 2023, 9, 603–612. [Google Scholar] [CrossRef]
- Rocca, P.; Da, P.; Anselmi, N.; Salucci, M.; Oliveri, G.; Erricolo, D.; Massa, A. On the design of modular reflecting EM skins for enhanced urban wireless coverage. IEEE Trans. Antennas Propag. 2022, 70, 8771–8784. [Google Scholar] [CrossRef]
- Yu, Y.; Meng, F.Y.; Ding, C.; Lv, J.F.; He, L.; Han, J.Q.; Wang, C.; Zhang, K.; Xu, S.S.; Wu, Q. Low-cost laser cutting fabricated all-metallic metamaterial near-field focusing lens. Heliyon 2023, 9, e14401. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, L.; Yao, C.; Zhang, Q.; Xu, Z.; Guo, M.; Wang, Z. Ultrawideband Antipodal Tapered Slot Antenna with Gradient Refractive Index Metamaterial Lens. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2741–2745. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Liu, L.; Peng, S.; Zhang, Q.; Yu, L.; Sun, Y. All-Metal Beam Steering Lens Antenna for High Power Microwave Applications. IEEE Trans. Antennas Propag. 2017, 65, 7340–7344. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, L.; Chen, L.; Zhang, Q. Near field Focusing in Ground Penetrating Radar Based on Phase Compensation Algorithm. J. Phys. Conf. Ser. 2023, 2651, 012038. [Google Scholar] [CrossRef]
- Hansen, R. Focal Region Characteristics of Focused Array Antennas. IEEE Trans. Antennas Propag. 1985, 33, 1328–1337. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Zeng, W.; Zhao, X.; Guo, L.; Guo, M. A High-Gain Bow-Tie Antenna with Phase Gradient Metasurface Lens. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22847. [Google Scholar] [CrossRef]
a | d | r | L | H | h | ||
---|---|---|---|---|---|---|---|
20.3 | 36 | 1.4 | 1 | 0.9 | 700 | 37.5 | 0.6 |
0.30 | 0.109 | 0.110 | 0.247 | 0.222 | 4.3 | 5.2 | 0.9 |
0.50 | 0.120 | 0.127 | 0.556 | 0.352 | 4.4 | 5.1 | 0.7 |
0.75 | 0.145 | 0.150 | 0.760 | 0.620 | 4.8 | 5.3 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Guo, L.; Li, Y.; Wang, C. The Focusing Properties of a Modular All-Metal Lens in the Near-Field Region. Sensors 2024, 24, 5092. https://doi.org/10.3390/s24165092
Zhang Q, Guo L, Li Y, Wang C. The Focusing Properties of a Modular All-Metal Lens in the Near-Field Region. Sensors. 2024; 24(16):5092. https://doi.org/10.3390/s24165092
Chicago/Turabian StyleZhang, Qifei, Linyan Guo, Yunqing Li, and Chen Wang. 2024. "The Focusing Properties of a Modular All-Metal Lens in the Near-Field Region" Sensors 24, no. 16: 5092. https://doi.org/10.3390/s24165092
APA StyleZhang, Q., Guo, L., Li, Y., & Wang, C. (2024). The Focusing Properties of a Modular All-Metal Lens in the Near-Field Region. Sensors, 24(16), 5092. https://doi.org/10.3390/s24165092