A Linear Regression Approach for Best Scanline Determination in the Object to Image Space Transformation Using Pushbroom Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. The Collinearity Equation (CE)
2.3. Proposed Method
2.3.1. SCOPs and SCPs Generation
2.3.2. Linear Regression
2.3.3. Polynomial Regression Model (PRM)
2.3.4. Linear Regression BSD Model
2.3.5. Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
AP | image of Annapolis, Pleiades |
AS | image of Amsterdam, SPOT |
BSD | Best Scanline Determination |
BSS | Best Scanline Search |
BWS | Bisecting Window Search |
BWV | image of Boulder, WorldView |
CE | Collinearity Equation |
CPP | Central Perspective Plane |
CS | image of Curitiba, SPOT |
DTM | Digital Terrain Model |
DEM | Digital Elevation Model |
EOPs | Exterior Orientation Parameters |
GA | Genetic Algorithm |
GCPs | Ground Control Points |
GDP | General Distance Prediction |
IOPs | Interior Orientation Parameters |
JQB | image of Jaipur, QuickBird |
JS | image of Jaicos, SPOT |
LR | Linear Regression |
LRM | Linear Regression Model |
LSM | Least Square Method |
MLR | Multivariate Linear Regression |
MP | image of Melbourne, Pleiades |
MPC | Multiple Projection Center |
NR | Newton Raphson |
OGP | Optimal Global Polynomial |
PR | Polynomial Regression |
PRM | Polynomial Regression Model |
RAM | Random Access Memory |
RMSE | Root Mean Square Error |
RPCs | Rational Polynomial Coefficients |
SCOPs | Simulated Control Points |
SCPs | Simulated Check Points |
SDWV | image of San Diego, WorldView |
SLR | Simple Linear Regression |
SPI | image of Sao Paulo, IKONOS |
SS | Sequential Search |
SWV | image of Sydney, WorldView |
References
- Gong, D.; Han, Y.; Zhang, L. Quantitative Assessment of the Projection Trajectory-Based Epipolarity Model and Epipolar Image Resampling for Linear-Array Satellite Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 89–94. [Google Scholar] [CrossRef]
- Gong New Methods for 3D Reconstructions Using High Resolution Satellite Data. 2021. Available online: http://elib.uni-stuttgart.de/bitstream/11682/11470/1/PhD_thesis_Ke_Gong.pdf (accessed on 18 October 2022).
- Wang, M.; Hu, J.; Zhou, M.; Li, J.M.; Zhang, Z. Geometric Correction of Airborne Linear Array Image Based on Bias Matrix. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL–1/W1, 369–372. [Google Scholar] [CrossRef]
- Koduri, S. Modeling pushbroom scanning systems. In Proceedings of the 2012 14th International Conference on Modelling and Simulation, UKSim 2012, Cambridge, UK, 28–30 March 2012; pp. 402–406. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, S.; Li, Z.; Li, X.; Liu, T.; Wang, J.; Xie, J. Affine & scale-invariant heterogeneous pyramid features for automatic matching of high resolution pushbroom imagery from Chang’e 2 satellite. J. Earth Sci. 2016, 27, 716–726. [Google Scholar] [CrossRef]
- Geng, X.; Xu, Q.; Lan, C.; Hou, Y.; Miao, J.; Xing, S. An Efficient Geometric Rectification Method for Planetary Linear Pushbroom Images Based on Fast Back Projection Algorithm. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018. [Google Scholar] [CrossRef]
- Morgan, M.; Kim, K.O.; Jeong, S.; Habib, A. Epipolar resampling of space-borne linear array scanner scenes using parallel projection. Photogramm. Eng. Remote Sens. 2006, 72, 1255–1263. [Google Scholar] [CrossRef]
- Draréni, J.; Roy, S.; Sturm, P. Plane-based calibration for linear cameras. Int. J. Comput. Vis. 2011, 91, 146–156. [Google Scholar] [CrossRef]
- Jannati, M.; Zoej, M.J.V.; Mokhtarzade, M. Epipolar resampling of cross-track pushbroom satellite imagery using the rigorous sensor model. Sensors 2017, 17, 129. [Google Scholar] [CrossRef] [PubMed]
- Jannati, M.; Zoej, M.J.V.; Mokhtarzade, M. A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model. ISPRS J. Photogramm. Remote Sens. 2018, 137, 1–14. [Google Scholar] [CrossRef]
- Wang, M.; Hu, F.; Li, J. Epipolar resampling of linear pushbroom satellite imagery by a new epipolarity model. ISPRS J. Photogramm. Remote Sens. 2011, 66, 347–355. [Google Scholar] [CrossRef]
- Ahooei Nezhad, S.S.; Valadan Zoej, M.J.; Khoshelham, K.; Ghorbanian, A.; Farnaghi, M.; Jamali, S.; Youssefi, F.; Gheisari, M. Best Scanline Determination of Pushbroom Images for a Direct Object to Image Space Transformation Using Multilayer Perceptron. Remote Sens. 2024, 16, 2787. [Google Scholar] [CrossRef]
- Marsetič, A.; Oštir, K.; Fras, M.K. Automatic orthorectification of high-resolution optical satellite images using vector roads. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6035–6047. [Google Scholar] [CrossRef]
- Geng, X.; Xu, Q.; Xing, S.; Lan, C. A Generic Pushbroom Sensor Model for Planetary Photogrammetry. Earth Sp. Sci. 2020, 7, e2019EA001014. [Google Scholar] [CrossRef]
- Habib, A.F.; Bang, K.I.; Kim, C.J.; Shin, S.W. True ortho-photo generation from high resolution satellite imagery. In Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2006; pp. 641–656. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, G.; Li, L.; Tan, Z.; Tang, Z.; Xu, Y. A novel inverse transformation algorithm for pushbroom TDI CCD imaging. Int. J. Remote Sens. 2022, 43, 1074–1090. [Google Scholar] [CrossRef]
- Shen, X.; Wu, G.; Sun, K.; Li, Q. A fast and robust scan-line search algorithm for object-to-image projection of airborne pushbroom images. Photogramm. Eng. Remote Sens. 2015, 81, 565–572. [Google Scholar] [CrossRef]
- Zhang, A.; Hu, S.; Meng, X.; Yang, L.; Li, H. Toward high altitude airship ground-based boresight calibration of hyperspectral pushbroom imaging sensors. Remote Sens. 2015, 7, 17297–17311. [Google Scholar] [CrossRef]
- Geng, X.; Xu, Q.; Xing, S.; Lan, C. A Robust Ground-to-Image Transformation Algorithm and Its Applications in the Geometric Processing of Linear Pushbroom Images. Earth Sp. Sci. 2019, 6, 1805–1830. [Google Scholar] [CrossRef]
- Geng, X.; Xu, Q.; Xing, S.; Lan, C.; Hou, Y. Real time processing for epipolar resampling of linear pushbroom imagery based on the fast algorithm for best scan line searching. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2013, XL–2/W2, 129–131. [Google Scholar] [CrossRef]
- Nezhad, S.S.A.; Zoej, M.J.V.; Ghorbanian, A. A fast non-iterative method for the object to image space best scanline determination of spaceborne linear array pushbroom images. Adv. Sp. Res. 2021, 68, 3584–3593. [Google Scholar] [CrossRef]
- Bang, K.I.; Kim, C. A New True Ortho-photo Generation Algorithm for High Resolution Satellite Imagery. Korean J. Remote Sens. 2010, 26, 347–359. [Google Scholar]
- Liu, J.; Wang, D. Efficient orthoimage generation from ADS40 level 0 products. J. Remote Sens. 2007, 11, 247. [Google Scholar]
- Chen, L.C.; Rau, J.Y. A Unified Solution for Digital Terrain Model and Orthoimage Generation from SPOT Stereopairs. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1243–1252. [Google Scholar] [CrossRef]
- Wang, M.; Hu, F.; Li, J.; Pan, J. A fast approach to best scanline search of airborne linear pushbroom images. Photogramm. Eng. Remote Sens. 2009, 75, 1059–1067. [Google Scholar] [CrossRef]
- Al-Rbaihat, R.; Alahmer, H.; Al-Manea, A.; Altork, Y.; Alrbai, M.; Alahmer, A. Maximizing efficiency in solar ammonia–water absorption refrigeration cycles: Exergy analysis, concentration impact, and advanced optimization with GBRT machine learning and FHO optimizer. Int. J. Refrig. 2024, 161, 31–50. [Google Scholar] [CrossRef]
- Huang, R.; Zheng, S.; Hu, K. Registration of aerial optical images with LiDAR data using the closest point principle and collinearity equations. Sensors 2018, 18, 1770. [Google Scholar] [CrossRef]
- Safdarinezhad, A.; Zoej, M.J.V. An optimized orbital parameters model for geometric correction of space images. Adv. Sp. Res. 2015, 55, 1328–1338. [Google Scholar] [CrossRef]
- Zoej, M.J.V. Photogrammetric Evaluation of Space Linear Array Imagery for Medium Scale Topographic Mapping. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 1997. Available online: https://theses.gla.ac.uk/4777/1/1997zoejphd1.pdf (accessed on 18 October 2022).
- Kumari, K.; Yadav, S. Linear regression analysis study. J. Pract. Cardiovasc. Sci. 2018, 4, 33. [Google Scholar] [CrossRef]
- Hope, T.M.H. Linear regression. In Machine Learning: Methods and Applications to Brain Disorders; Academic Press: Cambridge, MA, USA, 2019; pp. 67–81. [Google Scholar] [CrossRef]
- Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A Study on Multiple Linear Regression Analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Pagiatakis, S.D.; Hassan, Q.K. A survey on change detection and time series analysis with applications. Appl. Sci. 2021, 11, 6141. [Google Scholar] [CrossRef]
- Filzmoser, P.; Nordhausen, K. Robust linear regression for high-dimensional data: An overview. Wiley Interdiscip. Rev. Comput. Stat. 2021, 13, e1524. [Google Scholar] [CrossRef]
- Ostertagová, E. Modelling using polynomial regression. Procedia Eng. 2012, 48, 500–506. [Google Scholar] [CrossRef]
- Yee, G.P.; Rusiman, M.S.; Ismail, S.; Suparman; Hamzah, F.M.; Shafi, M.A. K-means clustering analysis and multiple linear regression model on household income in Malaysia. IAES Int. J. Artif. Intell. 2023, 12, 731–738. [Google Scholar] [CrossRef]
Mathematical Model | Inputs | Outputs | ||
---|---|---|---|---|
Preprocessing steps | Space resection |
|
|
|
SCOPs and SCPs generation |
|
|
| |
LRM–BSD steps | Training phase |
|
|
|
Testing phase |
|
|
|
Dataset | Imaging Sensor | Coverage Zone | Spatial Resolution (m) | Subset Size (Pixel) |
---|---|---|---|---|
SPI | IKONOS | Sao Paulo, Brazil | 0.80 | 8300 × 8600 |
MP | Pleiades 1A | Melbourne, Australia | 0.5 | 6000 × 7000 |
AP | Pleiades 1B | Annapolis, MD, USA | 0.5 | 6057 × 5636 |
JQB | QuickBird | Jaipur, India | 0.6 | 6000 × 6000 |
JS | SPOT 6 | Jaicos, Brazil | 1.5 | 6200 × 6600 |
AS | SPOT 7 | Amsterdam, The Netherlands | 1.5 | 5824 × 6616 |
CS | SPOT 7 | Curitiba, Brazil | 6 | 2597 × 1463 |
BWV | WorldView 1 | Boulder, CO, USA | 0.5 | 6000 × 6000 |
SWV | WorldView 2 | Sydney, Australia | 0.5 | 6000 × 6000 |
SDWV | WorldView 2 | San Diego, CA, USA | 0.5 | 3996 × 4015 |
Image | # of SCOPs | RMSE | Time | drmax |
---|---|---|---|---|
SPI | 10 | 4.5 × 10−9 | 2.72 | 7.4 × 10−9 |
30 | 4.0 × 10−9 | 2.37 | 7.6 × 10−9 | |
50 | 1.2 × 10−9 | 2.00 | 2.7 × 10−9 | |
100 | 4.0 × 10−9 | 2.02 | 7.2 × 10−9 | |
MP | 10 | 3.1 × 10−9 | 2.10 | 6.4 × 10−9 |
30 | 2.3 × 10−9 | 2.29 | 3.3 × 10−9 | |
50 | 2.3 × 10−9 | 2.13 | 4.4 × 10−9 | |
100 | 4.8 × 10−9 | 2.25 | 9.0 × 10−9 | |
AP | 10 | 1.5 × 10−9 | 2.48 | 4.0 × 10−9 |
30 | 2.1 × 10−9 | 2.25 | 4.5 × 10−9 | |
50 | 2.9 × 10−9 | 2.40 | 5.8 × 10−9 | |
100 | 1.7 × 10−9 | 2.68 | 3.1 × 10−9 | |
JQB | 10 | 7.0 × 10−10 | 2.52 | 1.6 × 10−9 |
30 | 4.4 × 10−10 | 2.25 | 9.5 × 10−10 | |
50 | 5.9 × 10−10 | 3.16 | 1.0 × 10−9 | |
100 | 2.6 × 10−9 | 2.75 | 3.9 × 10−9 | |
JS | 10 | 8.8 × 10−10 | 3.11 | 2.4 × 10−9 |
30 | 2.0 × 10−9 | 2.60 | 4.4 × 10−9 | |
50 | 9.9 × 10−10 | 2.28 | 3.3 × 10−9 | |
100 | 2.1 × 10−9 | 2.63 | 3.3 × 10−9 | |
AS | 10 | 5.7 × 10−10 | 2.49 | 1.0 × 10−9 |
30 | 3.1 × 10−10 | 2.31 | 7.6 × 10−10 | |
50 | 1.8 × 10−10 | 2.34 | 3.9 × 10−10 | |
100 | 1.6 × 10−9 | 2.82 | 2.1 × 10−9 | |
CS | 10 | 1.7 × 10−10 | 2.60 | 3.7 × 10−10 |
30 | 2.8 × 10−10 | 2.36 | 5.5 × 10−10 | |
50 | 2.8 × 10−10 | 2.42 | 5.5 × 10−10 | |
100 | 6.0 × 10−10 | 2.09 | 1.2 × 10−9 | |
BWV | 10 | 1.8 × 10−9 | 2.30 | 4.3 × 10−9 |
30 | 9.8 × 10−10 | 2.41 | 2.5 × 10−9 | |
50 | 3.3 × 10−9 | 2.38 | 5.5 × 10−9 | |
100 | 3.9 × 10−9 | 2.50 | 7.2 × 10−9 | |
SWV | 10 | 9.0 × 10−10 | 1.94 | 1.7 × 10−9 |
30 | 3.2 × 10−9 | 1.95 | 4.1 × 10−9 | |
50 | 3.9 × 10−9 | 1.79 | 7.3 × 10−9 | |
100 | 3.0 × 10−9 | 1.93 | 4.3 × 10−9 | |
SDWV | 10 | 1.0 × 10−9 | 2.29 | 1.7 × 10−9 |
30 | 2.6 × 10−9 | 1.95 | 4.5 × 10−9 | |
50 | 1.1 × 10−9 | 1.95 | 1.8 × 10−9 | |
100 | 1.4 × 10−9 | 2.03 | 2.1 × 10−9 |
Dataset | Measurement Criteria | Method | ||||
---|---|---|---|---|---|---|
Newton Raphson (NR) [24] | Bisecting Window Search (BWS) [23] | ANN–BSD [21] | OGP–BSD [21] | Proposed Method (LRM) | ||
SPI | RMSE (pixel) | 5.9 × 10−10 | 0.60 | 0.28 | 0.28 | 1.2 × 10−9 |
Time (second) | 512.00 | 1491.20 | 3.30 | 6.80 | 2.00 | |
drmax (pixel) | 1.73 × 10−9 | 1 | 0.61 | 0.57 | 2.7 × 10−9 | |
Number of SCOPs | - | - | 400 | 400 | 50 | |
MP | RMSE (pixel) | 1.0 × 10−9 | 0.58 | 0.30 | 0.30 | 2.3 × 10−9 |
Time (second) | 591.70 | 1415.10 | 3.43 | 7.94 | 2.29 | |
drmax (pixel) | 2.6 × 10−9 | 1 | 0.67 | 0.67 | 3.3 × 10−9 | |
Number of SCOPs | - | - | 500 | 500 | 30 | |
AP | RMSE (pixel) | 9.6 × 10−10 | 0.58 | 0.30 | 0.30 | 1.5 × 10−9 |
Time (second) | 520.21 | 1396.87 | 3.40 | 7.64 | 2.48 | |
drmax (pixel) | 1.2 × 10−9 | 1 | 0.67 | 0.77 | 4.0 × 10−9 | |
Number of SCOPs | - | - | 500 | 500 | 10 | |
JQB | RMSE (pixel) | 4.4 × 10−10 | 0.58 | 0.30 | 0.30 | 4.4 × 10−10 |
Time (second) | 425.94 | 1324.22 | 3.81 | 7.84 | 2.25 | |
drmax (pixel) | 1.2 × 10−9 | 1 | 0.72 | 0.69 | 9.5 × 10−10 | |
Number of SCOPs | - | - | 500 | 500 | 30 | |
JS | RMSE (pixel) | 6.2 × 10−10 | 0.58 | 0.30 | 0.30 | 8.8 × 10−10 |
Time (second) | 484.48 | 1355.63 | 3.77 | 9.96 | 3.11 | |
drmax (pixel) | 2.2 × 10−9 | 1 | 0.73 | 0.63 | 2.4 × 10−9 | |
Number of SCOPs | - | - | 500 | 1000 | 10 | |
AS | RMSE (pixel) | 2.5 × 10−10 | 0.58 | 0.29 | 0.31 | 1.8 × 10−10 |
Time (second) | 460.37 | 1270.50 | 4.45 | 8.31 | 2.34 | |
drmax (pixel) | 6.2 × 10−10 | 1 | 0.58 | 0.81 | 3.9 × 10−10 | |
Number of SCOPs | - | - | 700 | 500 | 50 | |
CS | RMSE (pixel) | 6.6 × 10−10 | 0.58 | 0.29 | 0.29 | 1.7 × 10−10 |
Time (second) | 415.30 | 890.40 | 3.39 | 7.07 | 2.60 | |
drmax (pixel) | 2.4 × 10−9 | 1 | 0.61 | 0.55 | 3.7 × 10−10 | |
Number of SCOPs | - | - | 400 | 200 | 10 | |
BWV | RMSE (pixel) | 1.2 × 10−9 | 0.56 | 0.29 | 0.28 | 9.8 × 10−10 |
Time (second) | 477.54 | 1376.80 | 3.57 | 7.97 | 2.41 | |
drmax (pixel) | 2.7 × 10−9 | 1 | 0.52 | 0.52 | 2.5 × 10−9 | |
Number of SCOPs | - | - | 400 | 400 | 30 | |
SWV | RMSE (pixel) | 9.9 × 10−10 | 0.57 | 0.32 | 0.32 | 9.0 × 10−10 |
Time (second) | 475.13 | 1250.78 | 3.31 | 7.80 | 1.94 | |
drmax (pixel) | 2.5 × 10−9 | 1 | 0.72 | 0.71 | 1.7 × 10−9 | |
Number of SCOPs | - | - | 500 | 500 | 10 | |
SDWV | RMSE (pixel) | 3.9 × 10−10 | 0.57 | 0.30 | 0.30 | 1.0 × 10−9 |
Time (second) | 490.56 | 1285.10 | 3.71 | 8.80 | 2.29 | |
drmax (pixel) | 9.3 × 10−10 | 1 | 0.57 | 0.58 | 1.7 × 10−9 | |
Number of SCOPs | - | - | 500 | 500 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahooei Nezhad, S.S.; Valadan Zoej, M.J.; Youssefi, F.; Ghaderpour, E. A Linear Regression Approach for Best Scanline Determination in the Object to Image Space Transformation Using Pushbroom Images. Sensors 2024, 24, 5594. https://doi.org/10.3390/s24175594
Ahooei Nezhad SS, Valadan Zoej MJ, Youssefi F, Ghaderpour E. A Linear Regression Approach for Best Scanline Determination in the Object to Image Space Transformation Using Pushbroom Images. Sensors. 2024; 24(17):5594. https://doi.org/10.3390/s24175594
Chicago/Turabian StyleAhooei Nezhad, Seyede Shahrzad, Mohammad Javad Valadan Zoej, Fahimeh Youssefi, and Ebrahim Ghaderpour. 2024. "A Linear Regression Approach for Best Scanline Determination in the Object to Image Space Transformation Using Pushbroom Images" Sensors 24, no. 17: 5594. https://doi.org/10.3390/s24175594
APA StyleAhooei Nezhad, S. S., Valadan Zoej, M. J., Youssefi, F., & Ghaderpour, E. (2024). A Linear Regression Approach for Best Scanline Determination in the Object to Image Space Transformation Using Pushbroom Images. Sensors, 24(17), 5594. https://doi.org/10.3390/s24175594