Characterization of Root Hair Curling and Nodule Development in Soybean–Rhizobia Symbiosis
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials and Root Hairs In Situ Observation
2.2. Root Image Processing (Root Hair and Nodule) and Root Hair Separation
- Step 1: Root hairs thinning
- Step 2: Root hair connecting with root axis
- Step 3: Searching and separating
2.3. Root Hair Curling Angle Calculation
2.4. Observed Nodule and Real Nodule Conversion
3. Result
3.1. Root Hair Curling Angle in Different Rhizobia Density
3.2. Root Hair Curling Angle over Time
3.3. Nodule Development over Time and Diameter Calibration
3.4. Relationship between Nodule Number/Diameter and Rhizobia Density
4. Discussion
4.1. Principal Findings and Comparison with Other Studies
4.2. Strengths and Limitations
4.3. Implications and Potential Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- de Freitas, V.F.; Cerezini, P.; Hungria, M.; Nogueira, M.A. Strategies to deal with drought-stress in biological nitrogen fixation in soybean. Appl. Soil Ecol. 2022, 172, 104352. [Google Scholar] [CrossRef]
- Mayhood, P.; Mirza, B.S. Soybean Root Nodule and Rhizosphere Microbiome: Distribution of Rhizobial and Non-rhizobial Endophytes. Appl. Environ. Microbiol. 2021, 87, e02884-20. [Google Scholar] [CrossRef] [PubMed]
- Lobo, C.B.; Tomás, M.S.J.; Viruel, E.; Ferrero, M.A.; Lucca, M.E. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 2019, 219, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Campolino, M.L.; dos Santos, T.T.; Lana, U.G.d.P.; Gomes, E.A.; Guilhen, J.H.S.; Pastina, M.M.; Coelho, A.M.; de Sousa, S.M. Crop type determines the relation between root system architecture and microbial diversity indices in different phosphate fertilization conditions. Field Crop. Res. 2023, 295, 108893. [Google Scholar] [CrossRef]
- Ferguson, B.J.; Mens, C.; Hastwell, A.H.; Zhang, M.; Su, H.; Jones, C.H.; Chu, X.; Gresshoff, P.M. Legume nodulation: The host controls the party. Plant Cell Environ. 2018, 42, 41–51. [Google Scholar] [CrossRef]
- Roy, S.; Liu, W.; Nandety, R.S.; Crook, A.; Mysore, K.S.; Pislariu, C.I.; Frugoli, J.; Dickstein, R.; Udvardi, M.K. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. Plant Cell 2018, 32, 15–41. [Google Scholar] [CrossRef]
- Peleg-Grossman, S.; Volpin, H.; Levine, A. Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J. Exp. Bot. 2007, 58, 1637–1649. [Google Scholar] [CrossRef]
- Cervantes-Pérez, S.A.; Thibivilliers, S.; Laffont, C.; Farmer, A.D.; Frugier, F.; Libault, M. Cell-specific pathways recruited for symbiotic nodulation in the Medicago truncatula legume. Mol. Plant 2022, 15, 1868–1888. [Google Scholar] [CrossRef]
- Su, C.; Zhang, G.; Rodriguez-Franco, M.; Hinnenberg, R.; Wietschorke, J.; Liang, P.; Yang, W.; Uhler, L.; Li, X.; Ott, T. Transcellular progression of infection threads in Medicago truncatula roots is associated with locally confined cell wall modifications. Curr. Biol. 2023, 33, 533–542.e5. [Google Scholar] [CrossRef]
- Gage, D.J.; Margolin, W. Hanging by a thread: Invasion of legume plants by rhizobia. Curr. Opin. Microbiol. 2000, 3, 613–617. [Google Scholar] [CrossRef]
- Figueredo, M.S.; Tonelli, M.L.; Muñoz, V.; Fabra, A. Role of phytohormones in legumes infected intercellularly by rhizobia without infection threads formation. Rhizosphere 2022, 24, 100622. [Google Scholar] [CrossRef]
- Nishida, H.; Suzaki, T. Nitrate-mediated control of root nodule symbiosis. Curr. Opin. Plant Biol. 2018, 44, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, W.; Zuo, Y.; Zhu, L.; Hastwell, A.H.; Chen, L.; Tian, Y.; Su, C.; Ferguson, B.J.; Li, X. GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. J. Exp. Bot. 2019, 70, 3165–3176. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, J.; Tan, Z.; Zeng, R.; Liao, H. GmEXPB2, a Cell Wall β-Expansin Gene, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development. Plant Physiol. 2015, 169, 2640–2653. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Q.; Li, X.; Ai, W.; Liu, D.; Qi, W.; Zhang, M.; Yang, C.; Liao, H. Characterization of Genetic Basis on Synergistic Interactions between Root Architecture and Biological Nitrogen Fixation in Soybean. Front. Plant Sci. 2017, 8, 1466. [Google Scholar] [CrossRef]
- Soyano, T.; Shimoda, Y.; Kawaguchi, M.; Hayashi, M. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus. Science 2019, 366, 1021–1023. [Google Scholar] [CrossRef]
- Schiessl, K.; Lilley, J.L.; Lee, T.; Tamvakis, I.; Kohlen, W.; Bailey, P.C.; Thomas, A.; Luptak, J.; Ramakrishnan, K.; Carpenter, M.D.; et al. NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula. Curr. Biol. 2019, 29, 3657–3668.e5. [Google Scholar] [CrossRef]
- Esseling, J.J.; Lhuissier, F.G.; Emons, A.M.C. Nod Factor-Induced Root Hair Curling: Continuous Polar Growth towards the Point of Nod Factor Application. Plant Physiol. 2003, 132, 1982–1988. [Google Scholar] [CrossRef]
- Hwang, S.; Ray, J.D.; Cregan, P.B.; King, C.A.; Davies, M.K.; Purcell, L.C. Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L. [Merr.]). Euphytica 2014, 195, 419–434. [Google Scholar] [CrossRef]
- Ke, D.; Li, X.; Han, Y.; Cheng, L.; Yuan, H.; Wang, L. ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus. Plant Physiol. Biochem. 2016, 108, 488–498. [Google Scholar] [CrossRef]
- Velandia, K.; Reid, J.B.; Foo, E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. Plant Commun. 2022, 3, 100327. [Google Scholar] [CrossRef]
- Duzan, H.M.; Zhou, X.; Souleimanov, A.; Smith, D.L. Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 2004, 55, 2641–2646. [Google Scholar] [CrossRef] [PubMed]
- Fournier, J.; Timmers, A.C.; Sieberer, B.J.; Jauneau, A.; Chabaud, M.; Barker, D.G. Mechanism of Infection Thread Elongation in Root Hairs of Medicago truncatula and Dynamic Interplay with Associated Rhizobial Colonization. Plant Physiol. 2008, 148, 1985. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Schmitz, C.; Lace, B.; Ditengou, F.A.; Su, C.; Schulze, E.; Knerr, J.; Grosse, R.; Keller, J.; Libourel, C.; et al. Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Curr. Biol. 2021, 31, 2712–2719. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, Y.; Zhu, L.; Tian, Y.; Chen, L.; Sun, Z.; Ullah, I.; Li, X. GmTIR1/GmAFB3-based auxin perception regulated by miR393 modulates soybean nodulation. New Phytol. 2017, 215, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, J.; Zhang, Y.; Kong, Y.; Dong, H.; Feng, X.; Li, T.; Zhou, C.; Yu, J.; Xin, D.; et al. Changes in the m6A RNA methylome accompany the promotion of soybean root growth by rhizobia under cadmium stress. J. Hazard. Mater. 2023, 441, 129843. [Google Scholar] [CrossRef] [PubMed]
- Scotson, C.P.; van Veelen, A.; Williams, K.A.; Koebernick, N.; Fletcher, D.M.; Roose, T. Developing a system for in vivo imaging of maize roots containing iodinated contrast media in soil using synchrotron XCT and XRF. Plant Soil 2021, 460, 647–665. [Google Scholar] [CrossRef]
- Metzner, R.; Eggert, A.; Van Dusschoten, D.; Pflugfelder, D.; Gerth, S.; Schurr, U.; Uhlmann, N.; Jahnke, S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods 2015, 11, 17. [Google Scholar] [CrossRef]
- Peruzzo, L.; Liu, X.; Chou, C.; Blancaflor, E.B.; Zhao, H.; Ma, X.F.; Mary, B.; Iván, V.; Weigand, M.; Wu, Y. Three hannel electrical impedance spectroscopy for field: Cale root phenotyping. Plant Phenome J. 2021, 4, e20021. [Google Scholar] [CrossRef]
- Cai, G.; Vanderborght, J.; Klotzsche, A.; van der Kruk, J.; Neumann, J.; Hermes, N.; Vereecken, H. Construction of Minirhizotron Facilities for Investigating Root Zone Processes. Vadose Zone J. 2016, 15, vzj2016.05.0043. [Google Scholar] [CrossRef]
- Amato, M.; Lupo, F.; Bitella, G.; Bochicchio, R.; Aziz, M.A.; Celano, G. A high quality low-cost digital microscope minirhizotron system. Comput. Electron. Agric. 2012, 80, 50–53. [Google Scholar] [CrossRef]
- Lu, W.; Wang, X.; Wang, F. Adaptive minirhizotron for pepper roots observation and its installation based on root system architecture traits. Plant Methods 2019, 15, 29. [Google Scholar] [CrossRef]
- Lu, W.; Wang, X.; Jia, W. Root hair image processing based on deep learning and prior knowledge. Comput. Electron. Agric. 2022, 202, 107397. [Google Scholar] [CrossRef]
- Lu, W.; Wang, X.; Wang, F.; Liu, J. Fine root capture and phenotypic analysis for tomato infected with Meloidogyne incognita. Comput. Electron. Agric. 2020, 173, 105455. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Suen, C.Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM 1984, 27, 236–239. [Google Scholar] [CrossRef]
- Barnes, C.; Shechtman, E.; Finkelstein, A.; Goldman, D.B. PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing. ACM Trans. Graph 2009, 28, 24. [Google Scholar] [CrossRef]
- Chen, H.; Giuffrida, M.V.; Doerner, P.; Tsaftaris, S.A. Adversarial Large-Scale Root Gap Inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Lu, W.; Li, Y.; Deng, Y. Root phenotypic detection of different vigorous maize seeds based on Progressive Corrosion Joining algorithm of image. Plant Methods 2019, 15, 137. [Google Scholar] [CrossRef]
- Taylor, B.N.; Beidler, K.V.; Strand, A.E.; Pritchard, S.G. Improved scaling of minirhizotron data using an empirically-derived depth of field and correcting for the underestimation of root diameters. Plant Soil 2014, 374, 941–948. [Google Scholar] [CrossRef]
- Roy, A.; Bucksch, A. Root hairs vs. trichomes: Not everyone is straight! Curr. Opin. Plant Biol. 2021, 64, 102151. [Google Scholar] [CrossRef]
- Liu, M.; Ke, X.; Joseph, S.; Siddique, K.H.; Pan, G.; Solaiman, Z.M. Interaction of rhizobia with native AM fungi shaped biochar effect on soybean growth. Ind. Crop. Prod. 2022, 187, 115508. [Google Scholar] [CrossRef]
Days after Inoculation | ||||||
---|---|---|---|---|---|---|
20 | 25 | 30 | 35 | 40 | 45 | |
Observed diameter (mm) | 0.71 ± 0.03 a | 1.14 ± 0.06 b | 2.33 ± 0.11 b | 3.33 ± 0.07 b | 3.82 ± 0.12 c | 4.16 ± 0.15 b |
Calculated diameter (mm) | ⁄ | 1.32 ± 0.09 a | 2.36 ± 0.06 b | 3.77 ± 0.09 a | 4.65 ± 0.7 a | 5.33 ± 0.13 a |
Measured diameter (mm) | 0.68 ± 0.02 a | 1.20 ± 0.03 b | 2.61 ± 0.08 a | 3.85 ± 0.08 a | 4.08 ± 0.13 b | 4.37 ± 0.13 b |
Relative error vs. observed | ⁄ | 10.24% | 6.05% | 13.51% | 12.79% | 14.58% |
Relative error vs. calculated | ⁄ | 3.94% | 4.84% | 2.08% | 6.16% | 7.45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Wang, X.; Jia, W. Characterization of Root Hair Curling and Nodule Development in Soybean–Rhizobia Symbiosis. Sensors 2024, 24, 5726. https://doi.org/10.3390/s24175726
Lu W, Wang X, Jia W. Characterization of Root Hair Curling and Nodule Development in Soybean–Rhizobia Symbiosis. Sensors. 2024; 24(17):5726. https://doi.org/10.3390/s24175726
Chicago/Turabian StyleLu, Wei, Xiaochan Wang, and Weidong Jia. 2024. "Characterization of Root Hair Curling and Nodule Development in Soybean–Rhizobia Symbiosis" Sensors 24, no. 17: 5726. https://doi.org/10.3390/s24175726
APA StyleLu, W., Wang, X., & Jia, W. (2024). Characterization of Root Hair Curling and Nodule Development in Soybean–Rhizobia Symbiosis. Sensors, 24(17), 5726. https://doi.org/10.3390/s24175726