Assessment of ADHD Subtypes Using Motion Tracking Recognition Based on Stroop Color–Word Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Basic Measures
2.3. Kinect Stroop Color–Word Test
3. Data Extraction and Analysis
3.1. Data Extraction
3.2. Data Analysis
4. Results
4.1. Clinical and Demographic Characteristics
4.2. Correct Rate
4.3. Reaction Times
4.4. Extraneous Movement Score
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SWCT | Stroop Color–Word Test |
ADHD | Attention-Deficit/Hyperactivity Disorder |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
EMR | Electronic Medical Records |
ASD | Autism Spectrum Disorder |
SPCD | Social (Pragmatic) Communication Disorder |
OCD | Obsessive Compulsive Disorder |
ODD | Oppositional Defiant Disorder |
MDD | Major Depressive Disorder |
KSCWT | Kinect-based Stroop Color–Word Test |
RT | Reaction Time |
EMS | Extraneous Movement Score |
CD | Conduct Disorder |
References
- Thomas, R.; Sanders, S.; Doust, J.; Beller, E.; Glasziou, P. Prevalence of Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. Pediatrics 2015, 135, e994–e1001. [Google Scholar] [CrossRef] [PubMed]
- Willcutt, E.G.; Doyle, A.E.; Nigg, J.T.; Faraone, S.V.; Pennington, B.F. Validity of the Executive Function Theory of Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Biol. Psychiatry 2005, 57, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Günther, T.; Konrad, K.; De Brito, S.A.; Herpertz-Dahlmann, B.; Vloet, T.D. Attentional functions in children and adolescents with ADHD, depressive disorders, and the comorbid condition. J. Child Psychol. Psychiatry Allied Discip. 2011, 52, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Durston, S.; van Belle, J.; de Zeeuw, P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol. Psychiatry 2011, 69, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Ayano, G.; Yohannes, K.; Abraha, M. Epidemiology of attention-deficit/hyperactivity disorder (ADHD) in children and adolescents in Africa: A systematic review and meta-analysis. Ann. Gen. Psychiatry 2020, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Willcutt, E.G. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, M. Artificial Intelligence in Psychiatry. In Frontiers in Psychiatry; Springer: Singapore, 2019; pp. 119–125. [Google Scholar] [CrossRef]
- Bruchmüller, K.; Margraf, J.; Schneider, S. Is ADHD diagnosed in accord with diagnostic criteria? Overdiagnosis and influence of client gender on diagnosis. J. Consult. Clin. Psychol. 2012, 80, 128–138. [Google Scholar] [CrossRef]
- Barkley, R.A. The inattentive type of ADHD as a distinct disorder: What remains to be done. Clin. Psychol. Sci. Pract. 2001, 8, 489–501. [Google Scholar] [CrossRef]
- Fair, D.A.; Bathula, D.; Nikolas, M.A.; Nigg, J.T. Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc. Natl. Acad. Sci. USA 2012, 109, 6769–6774. [Google Scholar] [CrossRef]
- Buitelaar, J.; Bölte, S.; Brandeis, D.; Caye, A.; Christmann, N.; Cortese, S.; Coghill, D.; Faraone, S.V.; Franke, B.; Gleitz, M.; et al. Toward Precision Medicine in ADHD. Front. Behav. Neurosci. 2022, 16, 900981. [Google Scholar] [CrossRef]
- Posner, J.; Polanczyk, G.V.; Sonuga-Barke, E. Attention-deficit hyperactivity disorder. Lancet 2020, 395, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Molavi, P.; Nadermohammadi, M.; Ghojehbeiglou, H.S.; Vicario, C.M.; Nitsche, M.A.; Salehinejad, M.A. ADHD subtype-specific cognitive correlates and association with self-esteem: A quantitative difference. BMC Psychiatry 2020, 20, 502. [Google Scholar] [CrossRef] [PubMed]
- Musser, E.D.; Raiker, J.S. Attention-deficit/hyperactivity disorder: An integrated developmental psychopathology and Research Domain Criteria (RDoC) approach. Compr. Psychiatry 2019, 90, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Wåhlstedt, C.; Thorell, L.B.; Bohlin, G. Heterogeneity in ADHD: Neuropsychological Pathways, Comorbidity and Symptom Domains. J. Abnorm. Child Psychol. 2008, 37, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Pasini, A.; Paloscia, C.; Alessandrelli, R.; Porfirio, M.C.; Curatolo, P. Attention and executive functions profile in drug naive ADHD subtypes. Brain Dev. 2007, 29, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Ho, J.; Hinshaw, S.P. Executive functions in girls with ADHD followed prospectively into young adulthood. Neuropsychology 2012, 26, 278–287. [Google Scholar] [CrossRef]
- Kofler, M.J.; Rapport, M.D.; Sarver, D.E.; Raiker, J.S.; Orban, S.A.; Friedman, L.M.; Kolomeyer, E.G. Reaction time variability in ADHD: A meta-analytic review of 319 studies. Clin. Psychol. Rev. 2013, 33, 795–811. [Google Scholar] [CrossRef]
- Dovis, S.; der Oord, S.V.; Wiers, R.W.; Prins, P.J.M. ADHD Subtype Differences in Reinforcement Sensitivity and Visuospatial Working Memory. J. Clin. Child Adolesc. Psychol. 2014, 44, 859–874. [Google Scholar] [CrossRef]
- Bella-Fernández, M.; Martin-Moratinos, M.; Li, C.; Wang, P.; Blasco-Fontecilla, H. Differences in Ex-Gaussian Parameters from Response Time Distributions Between Individuals with and Without Attention Deficit/Hyperactivity Disorder: A Meta-analysis. Neuropsychol. Rev. 2023. [Google Scholar] [CrossRef]
- Valori, I.; Longa, L.D.; Angeli, A.; Marfia, G.; Farroni, T. Reduced motor planning underlying inhibition of prepotent responses in children with ADHD. Sci. Rep. 2022, 12, 18202. [Google Scholar] [CrossRef]
- Folsom, R.; Levin, P. Conners’ Continuous Performance Test. In Encyclopedia of Autism Spectrum Disorders; Springer: New York, NY, USA, 2013; pp. 783–787. [Google Scholar] [CrossRef]
- Weinberger, K.A.; Gardner, D.M.; Gerdes, A.C. Maternal Functioning Differences Based on ADHD Subtype. J. Atten. Disord. 2015, 22, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Organero, M.; Powell, L.; Heller, B.; Harpin, V.; Parker, J. Using Recurrent Neural Networks to Compare Movement Patterns in ADHD and Normally Developing Children Based on Acceleration Signals from the Wrist and Ankle. Sensors 2019, 19, 2935. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Ching, C.T.S.; Wang, H.M.D.; Liao, L.D. Emerging Wearable Biosensor Technologies for Stress Monitoring and Their Real-World Applications. Biosensors 2022, 12, 1097. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.H.; Henderson, A.; Chow, S.M.K.; Yao, G. Relationship between motor proficiency, attention, impulse, and activity in children with ADHD. Dev. Med. Child Neurol. 2004, 46, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Kam, H.J.; Lee, K.; Cho, S.M.; Shin, Y.M.; Park, R.W. High-Resolution Actigraphic Analysis of ADHD: A Wide Range of Movement Variability Observation in Three School Courses—A Pilot Study. Healthc. Inform. Res. 2011, 17, 29. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, N.; Florentino-Liano, B.; Carballo, J.J.; Baca-García, E.; Rodríguez, A.A. Objective diagnosis of ADHD using IMUs. Med Eng. Phys. 2014, 36, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.C.; Ouyang, C.S.; Chiang, C.T.; Wu, R.C.; Yang, R.C. Quantitative Analysis of Movements in Children with Attention-Deficit Hyperactivity Disorder Using a Smart Watch at School. Appl. Sci. 2020, 10, 4116. [Google Scholar] [CrossRef]
- Sempere-Tortosa, M.; Fernández-Carrasco, F.; Navarro-Soria, I.; Rizo-Maestre, C. Movement Patterns in Students Diagnosed with ADHD, Objective Measurement in a Natural Learning Environment. Int. J. Environ. Res. Public Health 2021, 18, 3870. [Google Scholar] [CrossRef]
- Leontyev, A.; Sun, S.; Wolfe, M.; Yamauchi, T. Augmented Go/No-Go Task: Mouse Cursor Motion Measures Improve ADHD Symptom Assessment in Healthy College Students. Front. Psychol. 2018, 9, 496. [Google Scholar] [CrossRef]
- Delgado-Gomez, D.; Peñuelas-Calvo, I.; Masó-Besga, A.E.; Vallejo-Oñate, S.; Tello, I.B.; Duarte, E.A.; Varela, M.C.V.; Carballo, J.; Baca-García, E. Microsoft Kinect-based Continuous Performance Test: An Objective Attention Deficit Hyperactivity Disorder Assessment. J. Med. Internet Res. 2017, 19, e79. [Google Scholar] [CrossRef]
- Pfeiffer, S.I.; Yermish, A. Gifted children. In Translating Psychological Research into Practice; Grossman, L., Walfish, S., Eds.; Springer Publishing Company: Berlin/Heidelberg, Germany, 2014; pp. 57–64. [Google Scholar]
- Golden, C.J. A Group Version of the Stroop Color and Word Test. J. Personal. Assess. 1975, 39, 386–388. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [PubMed]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Delgado-Gómez, D.; Carmona-Vázquez, C.; Bayona, S.; Ardoy-Cuadros, J.; Aguado, D.; Baca-García, E.; Lopez-Castroman, J. Improving impulsivity assessment using movement recognition: A pilot study. Behav. Res. Methods 2015, 48, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Periáñez, J.A.; Lubrini, G.; García-Gutiérrez, A.; Ríos-Lago, M. Construct Validity of the Stroop Color-Word Test: Influence of Speed of Visual Search, Verbal Fluency, Working Memory, Cognitive Flexibility, and Conflict Monitoring. Arch. Clin. Neuropsychol. 2020, 36, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Labbe, R. Kalman and Bayesian Filters in Python; GitHub: San Francisco, CA, USA, 2020. [Google Scholar]
- Brown, V.A. An Introduction to Linear Mixed-Effects Modeling in R. Adv. Methods Pract. Psychol. Sci. 2021, 4, 251524592096035. [Google Scholar] [CrossRef]
- Green, P.; MacLeod, C.J. SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol. 2016, 7, 493–498. [Google Scholar] [CrossRef]
- Python Core Team. Python: A dynamic, Open Source Programming Language; Python Software Foundation: Wilmington, DE, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Schwartz, K.; Verhaeghen, P. ADHD and Stroop interference from age 9 to age 41 years: A meta-analysis of developmental effects. Psychol. Med. 2008, 38, 1607–1616. [Google Scholar] [CrossRef]
- van Mourik, R.; Oosterlaan, J.; Sergeant, J.A. The Stroop revisited: A meta-analysis of interference control in AD/HD. J. Child Psychol. Psychiatry 2005, 46, 150–165. [Google Scholar] [CrossRef]
- van Belle, J.; van Hulst, B.M.; Durston, S. Developmental differences in intra-individual variability in children with ADHD and ASD. J. Child Psychol. Psychiatry 2015, 56, 1316–1326. [Google Scholar] [CrossRef]
- Brocki, K.; Tillman, C.M.; Bohlin, G. CPT performance, motor activity, and continuous relations to ADHD symptom domains: A developmental study. Eur. J. Dev. Psychol. 2010, 7, 178–197. [Google Scholar] [CrossRef]
- Punja, S.; Shamseer, L.; Hartling, L.; Urichuk, L.; Vandermeer, B.; Nikles, J.; Vohra, S. Amphetamines for attention deficit hyperactivity disorder (ADHD) in children and adolescents. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.D.; D’Aiello, B.; Pretelli, I.; Menghini, D.; Vara, S.D.; Vicari, S. Age-related clinical characteristics of children and adolescents with ADHD. Front. Psychiatry 2023, 14, 1069934. [Google Scholar] [CrossRef] [PubMed]
Characteristic 1 | Overall (n = 61) | ADHD–H/C (n = 37) | ADHD–I (n = 24) | p-Value 2 |
---|---|---|---|---|
Gender, n (%) | >0.9 | |||
Male | 35 (57.4%) | 21 (56.8%) | 14 (58.3%) | |
Female | 26 (42.6%) | 16 (43.2%) | 10 (41.7%) | |
Age | 13.41 ± 2.62 | 12.84 ± 2.65 | 14.29 ± 2.37 | 0.03 |
Ethnic, n (%) | 0.5 | |||
Caucasian | 53 (86.9%) | 31 (83.8%) | 22 (91.7%) | |
Others | 8 (13.1%) | 6 (16.2%) | 2 (8.3%) | |
Birthplace, n (%) | 0.7 | |||
Spain | 53 (86.9%) | 33 (89.2%) | 20 (83.3%) | |
Others | 8 (13.1%) | 4 (10.8%) | 4 (16.7%) | |
Wearing glasses, n (%) | 17 (27.9%) | 9 (24.3%) | 8 (33.3%) | 0.6 |
Left handedness, n (%) | 5 (8.2%) | 2 (5.4%) | 3 (12.5%) | 0.4 |
Intellectual giftedness, n (%) | 9 (14.8%) | 5 (13.5%) | 4 (16.7%) | 0.7 |
Diagnosis age | 11.3 ± 3.2 | 10.7 ± 3.2 | 12.4 ± 3.1 | 0.04 |
Medication therapy, n (%) | 36 (59.0%) | 27 (73.0%) | 9 (37.5%) | 0.01 |
Treatment duration 3 | 5 (0–24) | 12 (0–36) | 0 (0–24) | 0.02 |
Psychotherapy 4, n (%) | 33 (54.1%) | 21 (56.8%) | 12 (50.0%) | 0.8 |
Comorbid Disorders 1 | ADHD–I | ADHD–H/C | TOTAL | |||
---|---|---|---|---|---|---|
Sample Num. | Disorder Num. (%) | Sample Num. | Disorder Num. (%) | Sample Num. | Disorder Num. (%) | |
ASD | 24 | 3 (12.5%) | 37 | 5 (13.5%) | 61 | 8 (13.1%) |
Learning Disorders 2 | 24 | 6 (25.0%) | 37 | 9 (24.3%) | 61 | 15 (24.6%) |
Crossed Laterality | 24 | 1 (4.2%) | 37 | 1 (2.7%) | 61 | 2 (3.3%) |
S (P)CD | 24 | 1 (4.2%) | 37 | 5 (13.5%) | 61 | 6 (9.8%) |
Executive Dysfunction | 24 | 13 (54.2%) | 37 | 12 (32.4%) | 61 | 25 (41.0%) |
Emotional Dysregulation | 24 | 1 (4.2%) | 37 | 4 (10.8%) | 61 | 5 (8.2%) |
Tics Disorder | 24 | 4 (16.7%) | 37 | 3 (8.1%) | 61 | 7 (11.5%) |
Elimination disorder | 24 | 1 (4.2%) | 37 | 1 (2.7%) | 61 | 2 (3.3%) |
ODD | 24 | / | 37 | 3 (8.1%) | 61 | 3 (4.9%) |
OCD | 24 | 2 (8.3%) | 37 | 2 (5.4%) | 61 | 4 (6.6%) |
Conduct disorder | 24 | / | 37 | 5 (13.5%) | 61 | 5 (8.2%) |
MDD | 24 | 2 (8.3%) | 37 | 2 (5.4%) | 61 | 4 (6.6%) |
Characteristic 1 | Overall (n = 61) | ADHD–H/C (n = 37) | ADHD–I (n = 24) | p-Value 2 |
---|---|---|---|---|
Based on Unadjusted RT | ||||
Number of responses (n) | ||||
Word | 24 (21–27) | 24 (21–27) | 24 (20–27) | >0.9 |
Color | 28 (25–31) | 28 (25–31) | 28 (26–30) | 0.3 |
Color–Word | 25 (22–29) | 26 (22–29) | 25 (22–29) | >0.9 |
Correct rate (%) | ||||
Word | 100 (92–100) | 95 (88–100) | 100 (96–100) | 0.01 |
Color | 97 (92–100) | 96 (87–100) | 100 (96–100) | 0.01 |
Color–Word | 96 (88–100) | 96 (88–100) | 96 (90–100) | 0.8 |
RT Mean (ms) | ||||
Word | 1158 (1033–1306) | 1168 (1062–1306) | 1153 (1017–1307) | 0.9 |
Color | 1026 (931–1112) | 1032 (921–1157) | 1015 (942–1101) | 0.7 |
Color–Word | 1189 (1031–1423) | 1195 (1083–1423) | 1141 (1031–1357) | 0.5 |
RT SD (ms) | ||||
Word | 295 (204–600) | 342 (206–662) | 282 (201–591) | 0.4 |
Color | 263 (179–411) | 267 (184–507) | 222 (163–328) | 0.2 |
Color–Word | 372 (287–627) | 387 (327–727) | 302 (236–524) | 0.07 |
RT Ex-Gaussian (ms) | ||||
Word | 913 (798–1031) | 886 (794–1031) | 964 (839–1034) | 0.2 |
Color | 815 (713–917) | 814 (677–909) | 833 (762–925) | 0.2 |
Color–Word | 889 (730–1031) | 881 (699–1031) | 891 (773–1030) | 0.8 |
RT Ex-Gaussian (ms) | ||||
Word | 100 (39–226) | 102 (39–232) | 96 (46–185) | 0.9 |
Color | 78 (54–146) | 86 (57–174) | 70 (53–139) | 0.5 |
Color–Word | 93 (44–267) | 101 (32–267) | 90 (55–265) | >0.9 |
RT Ex-Gaussian | ||||
Word | 2 (1–6) | 3 (1–7) | 2 (1–4) | 0.6 |
Color | 2 (1–5) | 2 (1–7) | 2 (2–3) | 0.7 |
Color–Word | 3 (1–7) | 3 (1–12) | 2 (2–4) | 0.6 |
Based on Adjusted RT | ||||
Number of responses (n) | ||||
Word | 23 (20–26) | 23 (20–26) | 23 (19–26) | 0.7 |
Color | 27 (23–30) | 27 (23–30) | 26 (23–28) | 0.3 |
Color–Word | 23 (20–28) | 24 (21–28) | 23 (19–26) | 0.4 |
Correct rate (%) | ||||
Word | 100 (93–100) | 95 (91–100) | 100 (100–100) | 0.002 |
Color | 97 (93–100) | 97 (87–100) | 100 (99–100) | 0.03 |
Color–Word | 96 (91–100) | 96 (90–100) | 96 (94–100) | 0.9 |
RT Mean (ms) | ||||
Word | 833 (738–927) | 855 (739–915) | 823 (731–964) | >0.9 |
Color | 733 (656–821) | 697 (652–825) | 737 (662–794) | >0.9 |
Color–Word | 847 (740–1009) | 859 (740–1022) | 801 (742–1006) | 0.5 |
RT SD (ms) | ||||
Word | 194 (159–291) | 222 (166–346) | 173 (152–244) | 0.09 |
Color | 181 (134–255) | 195 (153–305) | 158 (126–210) | 0.07 |
Color–Word | 289 (202–438) | 315 (249–482) | 263 (156–317) | 0.04 |
RT Ex-Gaussian (ms) | ||||
Word | 711 (606–797) | 682 (571–797) | 727 (667–796) | 0.3 |
Color | 613 (516–697) | 584 (480–694) | 652 (552–733) | 0.12 |
Color–Word | 656 (565–770) | 626 (513–770) | 679 (599–762) | 0.3 |
RT Ex-Gaussian (ms) | ||||
Word | 126 (77–202) | 132 (70–221) | 110 (99–169) | 0.6 |
Color | 118 (66–178) | 124 (59–189) | 117 (69–161) | >0.9 |
Color–Word | 106 (57–250) | 132 (82–250) | 95 (43–233) | 0.3 |
RT Ex-Gaussian | ||||
Word | 1 (0–2) | 1 (0–2) | 1 (0–2) | 0.9 |
Color | 1 (0.0–1.8) | 1 (0.2–2.3) | 1 (0.0–1.5) | 0.3 |
Color–Word | 2 (1–4) | 2 (1–4) | 2 (0–5) | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Delgado-Gómez, D.; Sujar, A.; Wang, P.; Martin-Moratinos, M.; Bella-Fernández, M.; Masó-Besga, A.E.; Peñuelas-Calvo, I.; Ardoy-Cuadros, J.; Hernández-Liebo, P.; et al. Assessment of ADHD Subtypes Using Motion Tracking Recognition Based on Stroop Color–Word Tests. Sensors 2024, 24, 323. https://doi.org/10.3390/s24020323
Li C, Delgado-Gómez D, Sujar A, Wang P, Martin-Moratinos M, Bella-Fernández M, Masó-Besga AE, Peñuelas-Calvo I, Ardoy-Cuadros J, Hernández-Liebo P, et al. Assessment of ADHD Subtypes Using Motion Tracking Recognition Based on Stroop Color–Word Tests. Sensors. 2024; 24(2):323. https://doi.org/10.3390/s24020323
Chicago/Turabian StyleLi, Chao, David Delgado-Gómez, Aaron Sujar, Ping Wang, Marina Martin-Moratinos, Marcos Bella-Fernández, Antonio Eduardo Masó-Besga, Inmaculada Peñuelas-Calvo, Juan Ardoy-Cuadros, Paula Hernández-Liebo, and et al. 2024. "Assessment of ADHD Subtypes Using Motion Tracking Recognition Based on Stroop Color–Word Tests" Sensors 24, no. 2: 323. https://doi.org/10.3390/s24020323
APA StyleLi, C., Delgado-Gómez, D., Sujar, A., Wang, P., Martin-Moratinos, M., Bella-Fernández, M., Masó-Besga, A. E., Peñuelas-Calvo, I., Ardoy-Cuadros, J., Hernández-Liebo, P., & Blasco-Fontecilla, H. (2024). Assessment of ADHD Subtypes Using Motion Tracking Recognition Based on Stroop Color–Word Tests. Sensors, 24(2), 323. https://doi.org/10.3390/s24020323