Data Sources and Models for Integrated Mobility and Transport Solutions
Abstract
:1. Introduction
- An updated and comprehensive overview (although not exhaustive) of the research and industrial literature about data modeling and types for smart mobility and transport.
- The main relationships among different data model concepts to highlight what kind of information (data models) can be obtained by processing them in the whole value chain of data on mobility and transport scenarios.
- Insights that can be derived by the data models and the business and derived in the context of integrated smart mobility and transport systems addressing multiple data models, spaces and types.
2. Mobility Transport Data Overview
3. Mobility and Transport Data Formats and Standard
3.1. Organization Data Group
3.2. Sensor Data Group
3.3. Vehicle and People Data Group
3.4. Data Spaces and National Access Points
4. Data Management and Exploitation
Data Flow Diagram for Mobility and Transport Analysis and Services
- Anomaly detections: for example, comparing real-time conditions with respect to typical or predicted conditions and thus producing notifications, tickets for maintenance and alarms when critical conditions/events are detected;
- Routing, multimodal routing and conditional routing for producing routing paths by taking into account real-time traffic/environmental conditions or possible changes inside city structures due to last-minute ordinance, accidents and natural/non-natural events;
- Origin–destination matrices (from census data, from OBU devices, from mobile apps data, from mobile operators’ data, etc., or by data fusion): trajectories for people and vehicles, semaphores cycles and simulations, in general;
- Prescriptions to solve critical conditions, such as improved semaphore cycles to reduce time to across the city, changes within city viability, etc. They are typically produced by using operative research algorithms exploiting optimization models.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urbanization. 2023. Available online: https://ourworldindata.org/urbanization (accessed on 10 November 2023).
- Wang, Q.; Li, L. The effects of population aging, life expectancy, unemployment rate, population density, per capita GDP, urbanization on per capita carbon emissions. Sustain. Prod. Consum. 2021, 28, 760–774. [Google Scholar] [CrossRef]
- Ruiz, A.Z.; Martín, J.M.M.; Prados-Castillo, J.F. The European Union facing climate change: A window of opportunity for technological development and entrepreneurship. Sustain. Technol. Entrep. 2023, 2, 100035. [Google Scholar]
- Bilotta, S.; Nesi, P. Estimating CO2 emissions from IoT traffic flow sensors and reconstruction. Sensors 2022, 22, 3382. [Google Scholar] [CrossRef]
- Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N.; Maasberg, M.; Choo, K.-K.R. Multimedia big data computing and Internet of Things applications: A taxonomy and process model. J. Netw. Comput. Appl. 2018, 124, 169–195. [Google Scholar] [CrossRef]
- Meneguette, R.I.; De Grande, R.; Loureiro, A.A. Intelligent Transport System in Smart Cities; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Arias-Molinares, D.; García-Palomares, J.C. The Ws of MaaS: Understanding mobility as a service from a literature review. IATSS Res. 2020, 44, 253–263. [Google Scholar] [CrossRef]
- Bilotta, S.; Nesi, P. Traffic flow reconstruction by solving indeterminacy on traffic distribution at junctions. Future Gener. Comput. Syst. 2021, 114, 649–660. [Google Scholar] [CrossRef]
- Bellini, P.; Bilotta, S.; Ipsaro Palesi, A.L.; Nesi, P.; Pantaleo, G. Vehicular Traffic Flow Reconstruction Analysis to Mitigate Scenarios with Large City Changes. IEEE Access 2022, 10, 131061–131075. [Google Scholar] [CrossRef]
- Rani, S.; Bhambri, P.; Kataria, A.; Khang, A.; Sivaraman, A.K. (Eds.) Big Data, Cloud Computing and IoT: Tools and Applications, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2023. [Google Scholar] [CrossRef]
- Dimitriu, C. The Difference between Relational and Non-Relational Databases in Programming. 2023. Available online: http://repository.utm.md/handle/5014/24038 (accessed on 10 November 2023).
- Hagelien, T.; Preisig, H.; Friis, J.; Klein, P.; Konchakova, N. A practical approach to ontology-based data modelling for semantic interoperability. In Proceedings of the 14th World Congress on Computational Mechanics, Virtual, 11–15 January 2021. [Google Scholar]
- Alberti, F.; Alessandrini, A.; Bubboloni, D.; Catalano, C.; Fanfani, M.; Loda, M.; Marino, A.; Masiero, A.; Meocci, M.; Nesi, P.; et al. Mobile mapping to support an integrated transport-territory modelling approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 1–7. [Google Scholar] [CrossRef]
- Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. Benefits, Adoption Barriers and Myths of Open Data and Open Government. Inf. Syst. Manag. 2012, 29, 258–268. [Google Scholar] [CrossRef]
- Collini, E.; Ipsaro Palesi, L.A.; Nesi, P.; Pantaleo, G.; Zhao, W. Flexible thermal camera solution for Smart city people detection and counting. Multimed. Tools Appl. 2023, 1–29. [Google Scholar] [CrossRef]
- Bilotta, S.; Ipsaro Palesi, L.A.; Nesi, P. Predicting Free Parking Slots via Deep Learning in Short-Mid Terms Explaining Temporal Impact of Features. IEEE Access 2023, 11, 101678–101693. [Google Scholar] [CrossRef]
- Badii, C.; Bilotta, S.; Cenni, D.; Difino, A.; Nesi, P.; Paoli, I.; Paolucci, M. High density real-time air quality derived services from IoT networks. Sensors 2020, 20, 5435. [Google Scholar] [CrossRef]
- Ketzler, B.; Naserentin, V.; Latino, F.; Zangelidis, C.; Thuvander, L.; Logg, A. Digital twins for cities: A state of the art review. Built Environ. 2020, 46, 547–573. [Google Scholar] [CrossRef]
- Adreani, L.; Bellini, P.; Colombo, C.; Fanfani, M.; Nesi, P.; Pantaleo, G.; Pisanu, R. Implementing Integrated Digital Twin Modelling and Representation into the Snap4City Platform for Smart City Solutions. Multimed. Tools Appl. 2023, 1–26. [Google Scholar] [CrossRef]
- Adreani, L.; Bellini, P.; Fanfani, M.; Nesi, P.; Pantaleo, G. Smart City Digital Twin Framework for Real-Time Multi-Data Integration and Wide Public Distribution. arXiv 2023, arXiv:2309.13394. [Google Scholar] [CrossRef]
- Schulz, W.H.; Wieker, H.; Arnegger, B. Cooperative, Connected and Automated Mobility: Overcoming the Loss of Strategic Competences by New Co-operation Models for Automotive and Telecommunication Industries. In Future Telco: Successful Positioning of Network Operators in the Digital Age; Springer: Cham, Switzerland, 2019; pp. 219–229. [Google Scholar]
- General Data Protection Regulation (GDPR). Available online: https://gdpr-info.eu/ (accessed on 10 November 2023).
- Englezou, Y.; Timotheou, S.; Panayiotou, C.G. Bayesian estimation of the origin-destination matrix using traffic flow dynamics. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019. [Google Scholar]
- Arman, A.; Badii, C.; Bellini, P.; Bilotta, S.; Nesi, P.; Paolucci, M. Analyzing Demand with Respect to Offer of Mobility. Appl. Sci. 2022, 12, 8982. [Google Scholar] [CrossRef]
- Juřík, D.; Janoš, V. Using Census Data for the Gravity Model in Smart Transport Planning. In Proceedings of the 2022 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 26–27 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Horák, J.; Ivan, I.; Tesla, J. Improved Gravity Models of Commuting Conditions: A Czech Case Study. In Proceedings of the Second International Conference on Traffic and Transport Engineering (ICTTE), Belgrade, Serbia, 27–28 November 2014. [Google Scholar]
- OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 10 November 2023).
- Osmosis. Available online: https://wiki.openstreetmap.org/wiki/Osmosis (accessed on 10 November 2023).
- TN-ITS. Available online: https://tn-its.eu/ (accessed on 10 November 2023).
- Overv OSM Tile Server. Available online: https://github.com/Overv/openstreetmap-tile-server (accessed on 10 November 2023).
- CDS. Available online: https://github.com/openmobilityfoundation/curb-data-specification (accessed on 10 November 2023).
- APDS Specification. Available online: https://github.com/parkingdata/spec (accessed on 10 November 2023).
- INSPIRE Directive. Available online: https://inspire.ec.europa.eu/ (accessed on 10 November 2023).
- GTFS. Available online: https://gtfs.org/ (accessed on 10 November 2023).
- NeTEx. Available online: https://www.netex-cen.eu/ (accessed on 10 November 2023).
- Transmodel. Available online: https://transmodel-cen.eu/ (accessed on 10 November 2023).
- SIRI. Available online: https://www.siri-cen.eu/ (accessed on 10 November 2023).
- OJP. Available online: https://www.transmodel-cen.eu/ojp-standard/ (accessed on 10 November 2023).
- TAP TSI. Available online: https://www.era.europa.eu/domains/technical-specifications-interoperability/telematics-applications-passenger-service-tsi_en (accessed on 10 November 2023).
- RailML. Available online: https://www.railml.org/en/ (accessed on 10 November 2023).
- OSDM. Available online: https://osdm.io/spec/catalog-of-code-lists/ (accessed on 10 November 2023).
- GBFS. Available online: https://gbfs.mobilitydata.org/ (accessed on 10 November 2023).
- MDS. Available online: https://github.com/openmobilityfoundation/mobility-data-specification (accessed on 10 November 2023).
- DIN SPCE 91367. Available online: https://www.din.de/en/innovation-and-research/din-spec-en/current-din-specs/wdc-beuth:din21:303381685 (accessed on 10 November 2023).
- Open Trip Model (OTM). Available online: https://www.opentripmodel.org/ (accessed on 10 November 2023).
- Digital Transport and Logistics Forum (DTLF). Available online: https://transport.ec.europa.eu/transport-themes/digital-transport-and-logistics-forum-dtlf_en (accessed on 10 November 2023).
- Australian National Freight Data Hub (NFDH). Available online: https://datahub.freightaustralia.gov.au/ (accessed on 10 November 2023).
- FIWARE. Available online: https://www.fiware.org/ (accessed on 10 November 2023).
- Bellini, P.; Nesi, P.; Pantaleo, G. IoT-enabled smart cities: A review of concepts, frameworks and key technologies. Appl. Sci. 2022, 12, 1607. [Google Scholar] [CrossRef]
- Fanfani, M.; Marulli, M.; Nesi, P. Addressing Domain Shift in Pedestrian Detection from Thermal Cameras without Fine-Tuning or Transfer Learning. In Proceedings of the 2023 IEEE International Conference on Smart Computing (SMARTCOMP), Nashville, TN, USA, 26–30 June 2023. [Google Scholar]
- Rao, W.; Wu, Y.J.; Xia, J.; Ou, J.; Kluger, R. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data. Emerg. Technol. 2018, 95, 29–46. [Google Scholar] [CrossRef]
- GraphHopper List of Open Data for Traffic. Available online: https://github.com/graphhopper/open-traffic-collection (accessed on 10 November 2023).
- DATEX-II Standard. Available online: https://datex2.eu/ (accessed on 10 November 2023).
- NTCIP. Available online: https://www.ntcip.org/ (accessed on 10 November 2023).
- UNI11248:2016 standard. Available online: https://store.uni.com/uni-11248-2016 (accessed on 30 November 2023).
- Nikolic, M.; Bierlaire, M. Review of transportation mode detection approaches based on smartphone data. In Proceedings of the 17th Swiss Transport Research Conference, Ascona, Switzerland, 17–19 May 2017. No. CONF. [Google Scholar]
- Mobility as a Service Platform for Employers and Individuals—HORIZON2020—EU. Available online: https://cordis.europa.eu/project/id/878052 (accessed on 10 November 2023).
- Antwerp MaaS, Selected Projects. Available online: https://www.slimnaarantwerpen.be/en/mobility-providers/call-for-projects-maas-selected-projects (accessed on 10 November 2023).
- Mobility as a Service for Italy Project. Available online: https://innovazione.gov.it/progetti/mobility-as-a-service-for-italy/ (accessed on 10 November 2023).
- TOMP API. Available online: https://github.com/TOMP-WG/TOMP-API (accessed on 10 November 2023).
- ETSI. Automotive Intelligent Transport Systems (ITS). Available online: https://www.etsi.org/technologies/automotive-intelligent-transport (accessed on 10 November 2023).
- Kousaridas, A.; Schimpe, A.; Euler, S.; Vilajosana, X.; Fallgren, M.; Landi, G.; Moscatelli, F.; Barmpounakis, S.; Vázquez-Gallego, F.; Sedar, R.; et al. 5G Cross-Border Operation for Connected and Automated Mobility: Challenges and Solutions. Future Internet 2019, 12, 5. [Google Scholar] [CrossRef]
- Muñoz, R.; Vázquez-Gallego, F.; Casellas, R.; Vilalta, R.; Sedar, R.; Alemany, P.; Martinez, R.; Alonso-Zárate, J.; Papageorgiou, A.; Catalan-Cid, M.; et al. 5GCroCo Barcelona Trial Site for Cross-border Anticipated Cooperative Collision Avoidance. In Proceedings of the 2020 European Conference on Networks and Communications (EuCNC), Dubrovnik, Croatia, 15–18 June 2020; pp. 34–39. [Google Scholar]
- Laux, S.; Pannu, G.S.; Schneider, S.; Tiemann, J.; Klingler, F.; Sommer, C.; Dressler, F. OpenC2X—An Open Source Experimental and Prototyping Platform Supporting ETSI ITS-G5. In Proceedings of the 8th IEEE Vehicular Networking Conference (VNC 2016), Columbus, OH, USA, 8–10 December 2016; pp. 152–153. [Google Scholar]
- Riebl, R. Vanetza, Open-Source Implementation of the ETSI ITS-G5 Protocol Stack. Available online: https://www.vanetza.org/ (accessed on 19 December 2020).
- Abstract Syntax Notation One (ASN.1). Available online: https://portal.etsi.org/Services/Centre-for-Testing-Interoperability/ETSI-Approach/Specification-Languages/ASN1 (accessed on 10 November 2023).
- SENSORIS. Available online: https://sensoris.org/ (accessed on 10 November 2023).
- Extended Vehicle (ExVe). Available online: https://www.iso.org/standard/80183.html (accessed on 10 November 2023).
- Open Diagnostic Data Exchange (ODX). Available online: https://www.asam.net/standards/detail/mcd-2-d/ (accessed on 10 November 2023).
- Hussain, E.; Bhaskar, A.; Chung, E. Transit OD matrix estimation using smartcard data: Recent developments and future research challenges. Emerg. Technol. 2021, 125, 103044. [Google Scholar] [CrossRef]
- Rashidi, T.H.; Abbasi, A.; Maghrebi, M.; Hasan, S.; Waller, T.S. Exploring the capacity of social media data for modelling travel behaviour: Opportunities and challenges. Emerg. Technol. 2017, 75, 197–211. [Google Scholar] [CrossRef]
- Jurdak, R.; Zhao, K.; Liu, J.; AbouJaoude, M.; Cameron, M.; Newth, D. Understanding human mobility from Twitter. PLoS ONE 2015, 10, e0131469. [Google Scholar] [CrossRef] [PubMed]
- Bellini, P.; Bilotta, S.; Collini, E.; Fanfani, M.; Nesi, P. Mobility and Transport Data for City Digital Twin Modeling and Exploitation. In Proceedings of the 2023 IEEE International Smart Cities Conference (ISC2), Bucharest, Romania, 24–27 September 2023; pp. 1–7. [Google Scholar]
- Otto, B.; ten Hompel, M.; Wrobel, S. Designing Data Spaces: The Ecosystem Approach to Competitive Advantage; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Garau, C.; Nesi, P.; Paoli, I.; Paolucci, M.; Zamperlin, P. A Big Data Platform for Smart and Sustainable Cities: Environmental Monitoring case studies in Europe. In Proceedings of the International Conference on Computational Science and Its Applications, ICCSA2020, Cagliari, Italy, 1–4 July 2020; Available online: https://link.springer.com/chapter/10.1007%2F978-3-030-58820-5_30 (accessed on 10 November 2023).
- Drees, H.; Dennis, O.K.; Lipp, J.; Pretzsch, S.; Langdon, C.S. Mobility data space–first implementation and business opportunities. In Proceedings of the 27th ITS World Congress, Hamburg, Germany, 11–15 October 2021; pp. 11–15. [Google Scholar]
- Pretzsch, S.; Drees, H.; Rittershaus, L. Mobility Data Space. In Designing Data Spaces; Otto, B., ten Hompel, M., Wrobel, S., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Mobility Data Space. Available online: https://mobility-dataspace.eu/ (accessed on 10 November 2023).
- Bonardi, M.; Brioschi, M.; Fuggetta, A.; Verga, E.S.; Zuccalà, M. Fostering collaboration through API economy: The E015 digital ecosystem. In Proceedings of the 3rd International Workshop on Software Engineering Research and Industrial Practice, Austin, TX, USA, 14–22 May 2016; pp. 32–38. [Google Scholar]
- NAPCORE Project. Available online: https://napcore.eu/ (accessed on 10 November 2023).
- European Intelligent Transport System directive (2010/40/EU). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010L0040 (accessed on 30 November 2023).
- PrepDSpace4Mobility Project. Available online: https://mobilitydataspace-csa.eu/ (accessed on 10 November 2023).
- International Data Spaces Association. Available online: https://internationaldataspaces.org/ (accessed on 10 November 2023).
- Minimal Interoperability Mechanisms. Available online: https://oascities.org/minimal-interoperability-mechanisms/ (accessed on 10 November 2023).
- FEDeRATED Project. Available online: https://www.federatedplatforms.eu/ (accessed on 10 November 2023).
- Cohen, J.E. DRM and Privacy. Commun. ACM 2003, 46, 46–49. [Google Scholar] [CrossRef]
- European. Data Act. Available online: https://digital-strategy.ec.europa.eu/en/policies/data-act (accessed on 10 November 2023).
- U.S. Federal Trade Commission. Available online: https://www.ftc.gov/ (accessed on 10 November 2023).
- IShare. Available online: https://ishare.eu/ (accessed on 10 November 2023).
- OAuth. Available online: https://oauth.net/2/ (accessed on 10 November 2023).
- OpenID Connect. Available online: https://openid.net/ (accessed on 10 November 2023).
- FundingBox. Available online: https://fundingbox.com/ (accessed on 10 November 2023).
- i4Trust. Available online: https://i4trust.org/ (accessed on 10 November 2023).
- Date, C.J. A Guide to the SQL Standard; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA; p. 1989.
- Maier, D. The Theory of Relational Databases; Computer Science Press: Rockville, MD, USA, 1983; Volume 11. [Google Scholar]
- Gray, J.; Reuter, A. Transaction Processing: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Vaisman, A.; Zimányi, E. Mobility Data Warehouses. ISPRS Int. J. Geo-Inf. 2019, 8, 170. [Google Scholar] [CrossRef]
- Etienne, L.; Ray, C.; Camossi, E.; Iphar, C. Maritime data processing in relational databases. In Guide to Maritime Informatics; Springer: Cham, Switzerland, 2021; pp. 73–118. [Google Scholar]
- Yang, X.; Procopiuc, C.M.; Srivastava, D. Summarizing Relational Databases. In Proceedings of the VLDB Endow; VLDB Endowment: Los Angeles, CA, USA, 2009; Volume 2, pp. 634–645. [Google Scholar] [CrossRef]
- Pritchett, D. BASE: An Acid Alternative: In partitioned databases, trading some consistency for availability can lead to dramatic improvements in scalability. Queue 2008, 6, 48–55. [Google Scholar] [CrossRef]
- Kunda, D.; Phiri, H. A comparative study of nosql and relational database. Zamb. ICT J. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Kanojia, A.; Tanwani, S. IT Infrastructure for Smart City: Issues and Challenges in Migration from Relational to NoSQL Databases. In Decision Analytics for Sustainable Development in Smart Society 5.0: Issues, Challenges and Opportunities; Springer: Singapore, 2022; pp. 93–112. [Google Scholar]
- Borgi, T.; Zoghlami, N.; Abed, M. Big data for transport and logistics: A review. In Proceedings of the 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 14–17 January 2017; pp. 44–49. [Google Scholar]
- Vera, H.; Boaventura, W.; Holanda, M.; Guimaraes, V.; Hondo, F. Data modeling for NoSQL document-oriented databases. In Proceedings of the CEUR Workshop Proceedings, Kavala, Greece, 17–20 September 2015; Volume 1478, pp. 129–135. [Google Scholar]
- Nurhadi, K.R.B.A.; Surin, E.S.B.M. Evaluation of NoSQL Databases Features and Capabilities for Smart City Data Lake Management. In Information Science and Applications: Proceedings of ICISA 2020; Springer: Singapore, 2021; pp. 383–392. [Google Scholar]
- Cheng, B.; Longo, S.; Cirillo, F.; Bauer, M.; Kovacs, E. Building a Big Data Platform for Smart Cities: Experience and Lessons from Santander. In Proceedings of the 2015 IEEE International Congress on Big Data, New York, NY, USA, 27 June–2 July 2015; pp. 592–599. [Google Scholar] [CrossRef]
- Bailis, P.; Ghodsi, A. Eventual consistency today: Limitations, extensions, and beyond. Commun. ACM 2013, 56, 55–63. [Google Scholar] [CrossRef]
- Borst, W.N. Construction of Engineering Ontologies for Knowledge Sharing and Reuse; Universiteit Twente: Ae Enschede, The Netherlands, 1999. [Google Scholar]
- De Nicola, A.; Missikoff, M. A lightweight methodology for rapid ontology engineering. Commun. ACM 2016, 59, 79–86. [Google Scholar] [CrossRef]
- Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 2009, 34, 1–45. [Google Scholar] [CrossRef]
- Komninos, N.; Bratsas, C.; Kakderi, C.; Tsarchopoulos, P. Smart city ontologies: Improving the effectiveness of smart city applications. J. Smart Cities 2019, 1, 31–46. [Google Scholar] [CrossRef]
- De Nicola, A.; Villani, M.L. Smart city ontologies and their applications: A systematic literature review. Sustainability 2021, 13, 5578. [Google Scholar] [CrossRef]
- Jin, M.; Claramunt, C. A semantic model for human mobility in an urban region. J. Data Semant. 2018, 7, 171–187. [Google Scholar] [CrossRef]
- Yazdizadeh, A.; Farooq, B. Smart mobility ontology: Current trends and future directions. In Handbook of Smart Cities; Springer: Cham, Switzerland, 2020; pp. 1–36. [Google Scholar]
- Codescu, M.; Horsinka, G.; Kutz, O.; Mossakowski, T.; Rau, R. Osmonto-an ontology of openstreetmap tags. State Map Eur. 2011, 2011, 23–24. [Google Scholar]
- Katsumi, M.; Fox, M. Icity Ontology Version 1.0 Report; University of Toronto Transportation Research Institute: Toronto, ON, Canada, 2017. [Google Scholar]
- Bellini, P.; Benigni, M.; Billero, R.; Nesi, P.; Rauch, N. Km4city ontology building vs data harvesting and cleaning for smart-city services. J. Vis. Lang. Comput. 2014, 25, 827–839. [Google Scholar] [CrossRef]
- Badii, C.; Bellini, P.; Cenni, D.; Difino, A.; Nesi, P.; Paolucci, M. Analysis and assessment of a knowledge based smart city architecture providing service APIs. Future Gener. Comput. Syst. 2017, 75, 14–29. [Google Scholar] [CrossRef]
- SUMI. Available online: https://transport.ec.europa.eu/system/files/2020-09/sumi_wp1_harmonisation_guidelines.pdf (accessed on 10 November 2023).
- SUMP/PUMS Wefering, F.; Rupprecht, S.; Bührmann, S.; Böhler-Baedeker, S. Linee Guida. Sviluppare e Attuare un Piano Urbano della Mobilità Sostenibile; European Platform on Sustainable Urban Mobility Plans: Luxembourg, 2014. [Google Scholar]
- Bilotta, S.; Collini, E.; Nesi, P.; Pantaleo, G. Short-term prediction of city traffic flow via convolutional deep learning. IEEE Access 2022, 1130, 1086–113099. [Google Scholar] [CrossRef]
- Bellini, P.; Bugli, F.; Nesi, P.; Pantaleo, G.; Paolucci, M.; Zaza, I. Data Flow Management and Visual Analytic for Big Data Smart City/IOT. In Proceedings of the 19th IEEE International Conference on Scalable Computing and Communication, IEEE SCALCOM 2019, Leicester, UK, 19–23 August 2019; Available online: https://www.slideshare.net/paolonesi/data-flow-management-and-visual-analytic-for-big-data-smart-cityiot (accessed on 10 November 2023).
- Adreani, L.; Bellini, P.; Colombo, C.; Fanfani, M.; Nesi, P.; Pantaleo, G.; Pisanu, R. Digital Twin Framework for Smart City Solutions. In Proceedings of the DMSVIVA 2022—Proceedings of the 28th International DMS Conference on Visualization and Visual Languages, Virtual, 29–30 June 2022; Knowledge Systems Institute Graduate School, KSI Research Inc.: Skokie, IL, USA, 2022; pp. 1–8. [Google Scholar]
- Adreani, L.; Bellini, P.; Fanfani, M.; Nesi, P.; Pantaleo, G. Design and Develop of a Smart City Digital Twin with 3D Representation and User Interface for What-If Analysis. In Proceedings of the International Conference on Computational Science and Its Applications, Athens, Greece, 3–6 July 2023; Springer Nature: Cham, Switzerland, 2023; pp. 531–548. [Google Scholar]
- Bellini, P.; Bologna, D.; Fanfani, M.; Ipsaro Palesi, L.A.; Nesi, P.; Pantaleo, G. Rapid Prototyping & Development Life Cycle for Smart Applications of Internet of Entities. In Proceedings of the IEEE ICECCS 2023, 26th International Conference on Engineering of Complex Computer Systems, Toulouse, France, 14–16 June 2023. [Google Scholar]
Data and Standards | Temporal Domain | Mobility Domain | Mobility Subdomain | Format | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Static | Historic | Real-Time | Infrastructure | Logistic | Sharing | Public Transport (PT) | Single Vehicles | Census | Road Network | Urban Elements | Traffic Signals | POI | Buildings | Terrain | Weather | Pollution | PT Urban: Bus, Tram, … | PT: Railways | Journey Planning | User notification | Vehicle Status/Diagnosis | Excel | SDMX | XML | CSV | JSON | GeoJSON | Protocol Buffers (PBF) | Esri Shapefiles | SVG | SQLite | RDF | PNG | GeoTIFF | Esri Grid ASCII (ASC) | ASN.1 | |
Statistical data | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||
GIS data (government) | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||
GIS data (OSM) [27] | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||||||||||||||||||
TN-ITS [29] | X | X | X | X | |||||||||||||||||||||||||||||||||
DEM (DTM, DSM) | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
CDS [31] | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||
GTFS [34] | X | X | X | X | |||||||||||||||||||||||||||||||||
GTFS-RT [34] | X | X | X | X | |||||||||||||||||||||||||||||||||
NeTEx [35] | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
SIRI [37] | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
Transmodel [36] | X | X | X | X | X | X | X | ||||||||||||||||||||||||||||||
OJP [38] | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
TAP TSI [39] | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
RailML [40] | X | X | X | X | X | X | |||||||||||||||||||||||||||||||
OSDM [41] | X | X | X | X | X | ||||||||||||||||||||||||||||||||
GBFS [42] | X | X | X | X | |||||||||||||||||||||||||||||||||
MDS [43] | X | X | X | X | X | ||||||||||||||||||||||||||||||||
DIN SPEC 91367 [44] | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||||||||||||
OTM [45] | X | X | X | X | |||||||||||||||||||||||||||||||||
IoT/IoE Sensors—TV Cam | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||
DATEX-II [53] | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||
NTCIP [54] | X | X | X | X | |||||||||||||||||||||||||||||||||
UNI11248:2016 [55] | X | X | X | ||||||||||||||||||||||||||||||||||
TOMP [60] | X | X | X | X | X | X | X | X | |||||||||||||||||||||||||||||
ETSI ITS [61] | X | X | X | X | X | X | X | ||||||||||||||||||||||||||||||
SENSORIS [67] | X | X | X | X | X | X | X | ||||||||||||||||||||||||||||||
ExVe [68] | X | X | X | X | X | ||||||||||||||||||||||||||||||||
ODX [69] | X | X | X | X | |||||||||||||||||||||||||||||||||
15 | 4 | 21 | 11 | 5 | 9 | 12 | 5 | 1 | 9 | 6 | 3 | 4 | 3 | 2 | 1 | 1 | 8 | 9 | 7 | 2 | 3 | 1 | 1 | 13 | 2 | 9 | 3 | 4 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellini, P.; Bilotta, S.; Collini, E.; Fanfani, M.; Nesi, P. Data Sources and Models for Integrated Mobility and Transport Solutions. Sensors 2024, 24, 441. https://doi.org/10.3390/s24020441
Bellini P, Bilotta S, Collini E, Fanfani M, Nesi P. Data Sources and Models for Integrated Mobility and Transport Solutions. Sensors. 2024; 24(2):441. https://doi.org/10.3390/s24020441
Chicago/Turabian StyleBellini, Pierfrancesco, Stefano Bilotta, Enrico Collini, Marco Fanfani, and Paolo Nesi. 2024. "Data Sources and Models for Integrated Mobility and Transport Solutions" Sensors 24, no. 2: 441. https://doi.org/10.3390/s24020441
APA StyleBellini, P., Bilotta, S., Collini, E., Fanfani, M., & Nesi, P. (2024). Data Sources and Models for Integrated Mobility and Transport Solutions. Sensors, 24(2), 441. https://doi.org/10.3390/s24020441