Low-Coherence Homodyne Interferometer for Sub-Megahertz Fiber Optic Sensor Readout
Abstract
:1. Introduction
2. Methods
- SLD central wavelength: = 1310 nm;
- SLD spectrum width: = 40 nm;
- Amplitude of the reference modulation ;
- Frequency of the reference modulation: = 20 kHz;
- Sensor length modulation (signal to be detected):
- Amplitude of the signal: ;
- Frequency of the signal: .
3. Experiment
- SLD central wavelength: = 1310 nm;
- SLD spectrum width: = 40 nm;
- SLD optical power: 1 mW;
- RI and SI arms’ length difference: 7 mm;
- Amplitude of the reference modulation ;
- Frequency of the reference modulation: = 20 kHz;
- Frequency of the test signal: .
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FOS | Fiber optic sensor |
FBG | Fiber Bragg grating |
RI | Reference interferometer |
SI | Sensor interferometer |
SLD | Superluminescent diode |
TLCI | Tandem low-coherence interferometry |
References
- Wu, Q.; Wang, R.; Yu, F.; Okabe, Y. Application of an Optical Fiber Sensor for Nonlinear Ultrasonic Evaluation of Fatigue Crack. IEEE Sens. J. 2019, 19, 4992–4999. [Google Scholar] [CrossRef]
- Wild, G.; Hinckley, S. Acousto-Ultrasonic Optical Fiber Sensors: Overview and State-of-the-Art. IEEE Sens. J. 2008, 8, 1184–1193. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Luo, X.; Liu, G.; Han, M. Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry–Perot interferometer and smart feedback control. Opt. Lett. 2017, 42, 631–634. [Google Scholar] [CrossRef]
- Liu, T.; Han, M. Analysis of π-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection. IEEE Sens. J. 2012, 12, 2368–2373. [Google Scholar] [CrossRef]
- Wu, Q.; Okabe, Y.; Saito, K.; Yu, F. Sensitivity Distribution Properties of a Phase-Shifted Fiber Bragg Grating Sensor to Ultrasonic Waves. Sensors 2014, 14, 1094–1105. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, B.; Shan, M.; Liu, L.; Yu, H.; Zhong, Z.; Liu, B. Optical fiber Fabry-Perot acoustic sensor based on large PDMS diaphragm. In Proceedings of the Tenth International Symposium on Precision Engineering Measurements and Instrumentation, Kunming, China, 8–10 August 2018; Tan, J., Lin, J., Eds.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2019; Volume 11053, p. 110531W. [Google Scholar] [CrossRef]
- Wu, G.; Li, H.; Ye, H.; Gong, Z.; Ma, J.; Guo, M.; Chen, K.; Peng, W.; Yu, Q.; Mei, L. Ultra-High-Sensitivity, Miniaturized Fabry-Perot Interferometric Fiber-Optic Microphone for Weak Acoustic Signals Detection. Sensors 2022, 22, 6948. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Fabry-Perot Interference Fiber Acoustic Wave Sensor Based on Laser Welding All-Silica Glass. Materials 2022, 15, 2484. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Chao, S.Y.; Lin, C.Y.; Chang, C.H.T.; Lan, W.H. Low-Frequency Vibration Sensor with Dual-Fiber Fabry-Perot Interferometer Using a Low-Coherence LED. Crystals 2022, 12, 1079. [Google Scholar] [CrossRef]
- Wang, F.; Xie, J.; Hu, Z.; Xiong, S.; Luo, H.; Hu, Y. Interrogation of Extrinsic Fabry–Perot Sensors Using Path-Matched Differential Interferometry and Phase Generated Carrier Technique. J. Light. Technol. 2015, 33, 2392–2397. [Google Scholar] [CrossRef]
- Sun, M.; Jin, Y.; Dong, X. All-Fiber Mach–Zehnder Interferometer for Liquid Level Measurement. IEEE Sens. J. 2015, 15, 3984–3988. [Google Scholar] [CrossRef]
- Gong, H.; Chan, C.; Chen, L.; Dong, X. Strain Sensor Realized by Using Low-Birefringence Photonic-Crystal-Fiber-Based Sagnac Loop. Photonics Technol. Lett. IEEE 2010, 22, 1238–1240. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A. Fast Demodulation Algorithm for Multiplexed Low-Finesse Fabry–Pérot Interferometers. J. Light. Technol. 2016, 34, 1015–1019. [Google Scholar] [CrossRef]
- Zhang, S.; Mei, Y.; Xia, T.; Cao, Z.; Liu, Z.; Li, Z. Simultaneous Measurement of Temperature and Pressure Based on Fabry-Perot Interferometry for Marine Monitoring. Sensors 2022, 22, 4979. [Google Scholar] [CrossRef]
- Lee, C.L.; Ma, C.T.; Yeh, K.C.; Chen, Y.M. A Dual-Cavity Fiber Fabry—Perot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer. Polymers 2022, 14, 4966. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Roriz, P.; Silva, S.O.; Santos, J.L.; Frazão, O. Next generation of Fabry-Perot sensors for high-temperature. Opt. Fiber Technol. 2013, 19, 833–837. [Google Scholar] [CrossRef]
- Rao, Y.J. Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Volkov, P.; Semikov, D.; Goryunov, A.; Luk’yanov, A.; Tertyshnik, A.; Vopilkin, E.; Krayev, S. Miniature fiber-optic sensor based on Si microresonator for absolute temperature measurements. Sens. Actuators A Phys. 2020, 316, 112385. [Google Scholar] [CrossRef]
- Lee, C.E.; Atkins, R.A.; Taylor, H.F. Performance of a fiber-optic temperature sensor from −200 to 1050 °C. Opt. Lett. 1988, 13, 1038–1040. [Google Scholar] [CrossRef]
- Volkov, P.; Lukyanov, A.; Goryunov, A.; Semikov, D.; Vopilkin, E.; Kraev, S.; Okhapkin, A.; Tertyshnik, A.; Arkhipova, E. Wideband MOEMS for the Calibration of Optical Readout Systems. Sensors 2021, 21, 7343. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, Y.; Wang, S.; Wang, Y.; Sun, Z.; Wang, W.; Liu, Z.; Liu, B. All-Sapphire Fiber-Optic Pressure Sensors for Extreme Harsh Environments. Opt. Express 2022, 30, 3665–3674. [Google Scholar] [CrossRef]
- Wada, A.; Tanaka, S.; Takahashi, N. Optical Fiber Vibration Sensor Using FBG Fabry–Perot Interferometer With Wavelength Scanning and Fourier Analysis. IEEE Sens. J. 2012, 12, 225–229. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Z. Feedback-stabilized interrogation technique for optical Fabry–Perot acoustic sensor using a tunable fiber laser. Opt. Laser Technol. 2013, 51, 43–46. [Google Scholar] [CrossRef]
- Mao, X.; Zhou, X.; Yu, Q. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors. Opt. Commun. 2016, 361, 17–20. [Google Scholar] [CrossRef]
- Chen, J.; Li, W.; Jiang, H.; Li, Z. Stabilization of a fiber Fabry–Perot interferometric acoustic wave sensor. Optik 2013, 124, 339–342. [Google Scholar] [CrossRef]
- Jia, J.; Jiang, Y.; Zhang, L.; Gao, H.; Jiang, L. Symbiosis-Michelson Interferometer-Based Detection Scheme for the Measurement of Dynamic Signals. IEEE Sens. J. 2019, 19, 7988–7992. [Google Scholar] [CrossRef]
- Liu, B.; Lin, J.; Liu, H.; Ma, Y.; Yan, L.; Jin, P. Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier. Opt. Commun. 2017, 382, 514–518. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Fu, J.; Li, X. Automatic carrier signal track algorithm in all-digital PGC demodulation scheme for optical interferometric sensors. J. Opt. Technol. 2017, 84, 265. [Google Scholar] [CrossRef]
- Efimov, M.; Plotnikov, M.; Kulikov, A.; Mekhrengin, M.; Kireenkov, A. Fiber-Optic Interferometric Sensor Based on the Self-Interference Pulse Interrogation Approach for Acoustic Emission Sensing in the Graphite/Epoxy Composite. IEEE Sens. J. 2019, 18, 7861–7867. [Google Scholar] [CrossRef]
- Hao, L.; Lu, P.; Wang, S.; Ni, W.; Liu, L.; Fu, X.; Liu, D.; Zhang, J. Phase Demodulation of Short-Cavity Fabry-Perot Interferometric Acoustic Sensor With Two Wavelengths. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Jing, Z.; Li, A.; Liu, Y.; Huang, Z.; Zhang, Y.; Peng, W. Common-path dual-wavelength quadrature phase demodulation of EFPI sensors using a broadly tunable MG-Y laser. Opt. Express 2019, 27, 27873. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, P.; Qu, Z.; Zhang, J.; Wu, Q.; Liu, D. Passive Homodyne Phase Demodulation Technique Based on LF-TIT-DCM Algorithm for Interferometric Sensors. Sensors 2021, 21, 8257. [Google Scholar] [CrossRef]
- Xia, J.; Xiong, S.; Wang, F.; Luo, H. Wavelength-switched phase interrogator for extrinsic Fabry–Perot interferometric sensors. Opt. Lett. 2016, 41, 3082–3085. [Google Scholar] [CrossRef]
- He, J.; Wang, L.; Li, F.; Liu, Y. An Ameliorated Phase Generated Carrier Demodulation Algorithm with Low Harmonic Distortion and High Stability. J. Light. Technol. 2010, 28, 3258–3265. [Google Scholar] [CrossRef]
- Jędrzejewska-Szczerska, M. Response of a New Low-Coherence Fabry-Perot Sensor to Hematocrit Levels in Human Blood. Sensors 2014, 14, 6965–6976. [Google Scholar] [CrossRef] [PubMed]
- Milewska, D.; Karpienko, K.; Szczerska, M. Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor. Diam. Relat. Mater. 2016, 64, 169–176. [Google Scholar] [CrossRef]
- Majchrowicz, D.; Hirsch, M.; Wierzba, P.; Bechelany, M.; Viter, R.; Szczerska, M. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers. Sensors 2016, 16, 416. [Google Scholar] [CrossRef]
- Hirsch, M.; Majchrowicz, D.; Wierzba, P.; Weber, M.; Bechelany, M.; Szczerska, M. Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors. Sensors 2017, 17, 261. [Google Scholar] [CrossRef]
- Volkov, P.; Lukyanov, A.; Goryunov, A.; Semikov, D.; Vopilkin, E.; Kraev, S. Fiber Optic Impact Location System Based on a Tracking Tandem Low-Coherence Interferometer. Sensors 2023, 23, 772. [Google Scholar] [CrossRef] [PubMed]
- Volkov, P.; Goryunov, A.; Lukyanov, A.; Okhapkin, A.; Tertyshnik, A.; Travkin, V.; Yunin, P. Continuous monitoring of temperature and rate of plasma etching of semiconductor wafers. Appl. Phys. Lett. 2015, 107, 111601. [Google Scholar] [CrossRef]
- Rao, Y.J.; Jackson, D.A. Recent progress in fibre optic low-coherence interferometry. Meas. Sci. Technol. 1996, 7, 981–999. [Google Scholar] [CrossRef]
- Dufour, M.; Lamouche, G.; Detalle, V.; Gauthier, B.; Sammut, P. Low-coherence interferometry—An advanced technique for optical metrology in industry. Insight-Non-Destr. Test. Cond. Monit. 2005, 47, 216–219. [Google Scholar] [CrossRef]
- Dandridge, A.; Tveten, A.; Giallorenzi, T. Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier. Quantum Electron. IEEE J. 1982, 18, 1647–1653. [Google Scholar] [CrossRef]
- Kim, K.; Kim, B.; Kang, J.G. Modeling Acoustic Emission Due to an Internal Point Source in Circular Cylindrical Structures. Appl. Sci. 2022, 12, 12032. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, P.; Lukyanov, A.; Goryunov, A.; Semikov, D.; Vyazankin, O. Low-Coherence Homodyne Interferometer for Sub-Megahertz Fiber Optic Sensor Readout. Sensors 2024, 24, 552. https://doi.org/10.3390/s24020552
Volkov P, Lukyanov A, Goryunov A, Semikov D, Vyazankin O. Low-Coherence Homodyne Interferometer for Sub-Megahertz Fiber Optic Sensor Readout. Sensors. 2024; 24(2):552. https://doi.org/10.3390/s24020552
Chicago/Turabian StyleVolkov, Petr, Andrey Lukyanov, Alexander Goryunov, Daniil Semikov, and Oleg Vyazankin. 2024. "Low-Coherence Homodyne Interferometer for Sub-Megahertz Fiber Optic Sensor Readout" Sensors 24, no. 2: 552. https://doi.org/10.3390/s24020552
APA StyleVolkov, P., Lukyanov, A., Goryunov, A., Semikov, D., & Vyazankin, O. (2024). Low-Coherence Homodyne Interferometer for Sub-Megahertz Fiber Optic Sensor Readout. Sensors, 24(2), 552. https://doi.org/10.3390/s24020552