Path Tracing-Inspired Modeling of Non-Line-of-Sight SPAD Data
Abstract
:1. Introduction
2. Problem Description
3. Simulation Framework
3.1. Sampling the Scene
3.2. Primary Scattering Paths
4. Secondary Scattering Paths
Optimized Secondary Scattering Paths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steinvall, O.; Elmqvist, M.; Larsson, H. See around the corner using active imaging. In Proceedings of the Conference on Electro-Optical Remote Sensing, Photonic Technologies, and Applications V, Prague, Czech Republic, 19–22 September 2011; SPIE: Bellingham, WA, USA, 2011; Volume 8186. [Google Scholar] [CrossRef]
- Faccio, D.; Velten, A.; Wetzstein, G. Non-line-of-sight imaging. Nat. Rev. Phys. 2020, 2, 318–327. [Google Scholar] [CrossRef]
- Geng, R.X.; Hu, Y.; Chen, Y. Recent Advances on Non-Line-of-Sight Imaging: Conventional Physical Models, Deep Learning, and New Scenes. Apsipa Trans. Signal Inf. Process. 2022, 11, 48. [Google Scholar] [CrossRef]
- Laurenzis, M.; Christnacher, F.; Klein, J.; Hullin, M.B.; Velten, A. Study of single photon counting for non-line-of-sight vision. In Proceedings of the Conference on Advanced Photon Counting Techniques IX, Baltimore, MD, USA, 22–23 April 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9492. [Google Scholar] [CrossRef]
- Chan, S.; Warburton, R.E.; Gariepy, G.; Leach, J.; Faccio, D. Non-line-of-sight tracking of people at long range. Opt. Express 2017, 25, 10109–10117. [Google Scholar] [CrossRef]
- Gariepy, G.; Tonolini, F.; Henderson, R.; Leach, J.; Faccio, D. Detection and tracking of moving objects hidden from view. Nat. Photonics 2016, 10, 23–26. [Google Scholar] [CrossRef]
- Laurenzis, M.; Christnacher, F.; Velten, A. Study of a dual mode SWIR active imaging system for direct imaging and non-line of sight vision. In Proceedings of the Conference on Laser Radar Technology and Applications XX and Atmospheric Propagation XII, Baltimore, MD, USA, 20–24 April 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9465. [Google Scholar] [CrossRef]
- Brooks, J.; Faccio, D. A single-shot non-line-of-sight range-finder. Sensors 2019, 19, 4820. [Google Scholar] [CrossRef]
- Laurenzis, M.; Klein, J.; Christnacher, F. Transient light imaging laser radar with advanced sensing capabilities: Reconstruction of arbitrary light in flight path and sensing around a corner. In Proceedings of the Conference on Laser Radar Technology and Applications XXI, Anaheim, CA, USA, 9–13 April 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10191. [Google Scholar] [CrossRef]
- Laurenzis, M.; La Manna, M.; Buttafava, M.; Tosi, A.; Nam, J.H.; Gupta, M.; Velten, A. Advanced Active Imaging with Single Photon Avalanche Diodes. In Proceedings of the Conference on Emerging Imaging and Sensing Technologies for Security and Defence III; and Unmanned Sensors, Systems, and Countermeasures, Berlin, Germany, 10–13 September 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10799. [Google Scholar] [CrossRef]
- Zhao, J.X.; Gramuglia, F.; Keshavarzian, P.; Toh, E.H.; Tng, M.; Lim, L.; Dhulla, V.; Quek, E.; Lee, M.J.; Charbon, E. A Gradient-Gated SPAD Array for Non-Line-of-Sight Imaging. IEEE J. Sel. Top. Quantum Electron. 2024, 30, 10. [Google Scholar] [CrossRef]
- Pediredla, A.; Dave, A.; Veeraraghavan, A.; IEEE. SNLOS: Non-line-of-sight Scanning through Temporal Focusing. In Proceedings of the IEEE International Conference on Computational Photography (ICCP), Tokyo, Japan, 15–17 May 2019; IEEE International Conference on Computational Photography: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Callenberg, C.; Shi, Z.; Heide, F.; Hullin, M.B. Low-Cost SPAD Sensing for Non-Line-Of-Sight Tracking, Material Classification and Depth Imaging. Acm Trans. Graph. 2021, 40, 12. [Google Scholar] [CrossRef]
- Wu, J.; Yu, C.; Zeng, J.W.; Dai, C.; Xu, F.H.; Zhang, J. Miniaturized time-correlated single-photon counting module for time-of-flight non-line-of-sight imaging applications. Rev. Sci. Instrum. 2024, 95, 6. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.J.; Huang, X.; Li, Z.P.; Yu, C.; Ye, J.T.; Zhang, J.; Zhang, Q.; Dou, X.K.; Goyal, V.K.; et al. Non-line-of-sight imaging over 1.43 km. Proc. Natl. Acad. Sci. USA 2021, 118, e2024468118. [Google Scholar] [CrossRef]
- Huang, X.; Ye, R.L.; Li, W.W.; Zeng, J.W.; Lu, Y.C.; Hu, H.Q.; Zhou, Y.J.; Hou, L.; Li, Z.P.; Jiang, H.F.; et al. Non-Line-of-Sight Imaging and Vibrometry Using a Comb-Calibrated Coherent Sensor. Phys. Rev. Lett. 2024, 132, 6. [Google Scholar] [CrossRef]
- Cui, Y.R.; Trichopoulos, G.C. Seeing Around Obstacles Using Active Terahertz Imaging. IEEE Trans. Terahertz Sci. Technol. 2024, 14, 433–445. [Google Scholar] [CrossRef]
- Feng, Y.F.; Cui, X.Y.; Meng, Y.; Yin, X.J.; Zou, K.; Hao, Z.F.; Yang, J.Y.; Hu, X.L. Non-line-of-sight imaging at infrared wavelengths using a superconducting nanowire single-photon detector. Opt. Express 2023, 31, 42240–42254. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, M.Y.; Han, J.J.; Huang, X.; Xie, X.P.; Xu, F.H.; Zhang, Q.; Pan, J.W. Non-Line-of-Sight Imaging with Picosecond Temporal Resolution. Phys. Rev. Lett. 2021, 127, 6. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Sua, Y.M.; Rehain, P.; Huang, Y.P. Single photon imaging and sensing of highly obscured objects around the corner. Opt. Express 2021, 29, 40865–40877. [Google Scholar] [CrossRef]
- Wang, Z.W.; Li, X.Y.; Pu, M.B.; Chen, L.W.; Zhang, F.; Zhang, Q.; Zhao, Z.B.; Yang, L.F.; Guo, Y.H.; Luo, X.A. Vectorial-Optics-Enabled Multi-View Non-Line-Of-Sight Imaging with High Signal-To-Noise Ratio. Laser Photonics Rev. 2024, 18, 10. [Google Scholar] [CrossRef]
- O’Toole, M.; Lindell, D.B.; Wetzstein, G.; Assoc Comp, M. Confocal Non-line-of-sight Imaging. In Proceedings of the Special-Interest-Group-on-Computer-Graphics-and-Interactive-Techniques (SIGGRAPH) Conference, Vancouver, BC, Canada, 12–16 August 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- O’Toole, M.; Lindell, D.B.; Wetzstein, G.; Assoc Comp, M. Real-time Non-line-of-sight Imaging. In Proceedings of the Special-Interest-Group-on-Computer-Graphics-and-Interactive-Techniques (SIGGRAPH) Conference, Vancouver, BC, Canada, 12–16 August 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Kutulakos, K.N.; Narasimhan, S.G.; Sankaranarayanan, A.C.; IEEE. The Geometry of First-Returning Photons for Non-Line-of-Sight Imaging. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE Conference on Computer Vision and Pattern Recognition: New York, NY, USA, 2017; pp. 2336–2344. [Google Scholar] [CrossRef]
- Heide, F.; O’Toole, M.; Zang, K.; Lindell, D.; Diamond, S.; Wetzstein, G. Non-line-of-sight Imaging with Partial Occluders and Surface Normals. Acm Trans. Graph. 2019, 38, 10. [Google Scholar] [CrossRef]
- Wang, D.J.; Hao, W.; Tian, Y.Y.; Xu, W.H.; Tian, Y.; Cheng, H.H.; Chen, S.M.; Zhang, N.; Zhu, W.H.; Su, X.Q. Enhancing the spatial resolution of time-of-flight based non-line-of-sight imaging via instrument response function deconvolution. Opt. Express 2024, 32, 12303–12317. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhou, Y.J.; Huang, X.; Li, Z.P.; Xu, F.H. Photon-Efficient Non-Line-of-Sight Imaging. IEEE Trans. Comput. Imaging 2022, 8, 639–650. [Google Scholar] [CrossRef]
- Rapp, J.; Saunders, C.; Tachella, J.; Murray-Bruce, J.; Altmann, Y.; Tourneret, J.Y.; McLaughlin, S.; Dawson, R.M.A.; Wong, F.N.C.; Goyal, V.K. Seeing around corners with edge-resolved transient imaging. Nat. Commun. 2020, 11, 10. [Google Scholar] [CrossRef]
- Musarra, G.; Lyons, A.; Conca, E.; Altmann, Y.; Villa, F.; Zappa, F.; Padgett, M.J.; Faccio, D. Non-Line-of-Sight Three-Dimensional Imaging with a Single-Pixel Camera. Phys. Rev. Appl. 2019, 12, 6. [Google Scholar] [CrossRef]
- Liu, X.C.; Bauer, S.; Velten, A. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nat. Commun. 2020, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.H.; Brandt, E.; Bauer, S.; Liu, X.C.; Renna, M.; Tosi, A.; Sifakis, E.; Velten, A. Low-latency time-of-flight non-line-of-sight imaging at 5 frames per second. Nat. Commun. 2021, 12, 10. [Google Scholar] [CrossRef]
- Pei, C.Q.; Zhang, A.K.; Deng, Y.; Xu, F.H.; Wu, J.M.; Li, D.U.L.; Qiao, H.; Fang, L.; Dai, Q.H. Dynamic non-line-of-sight imaging system based on the optimization of point spread functions. Opt. Express 2021, 29, 32349–32364. [Google Scholar] [CrossRef]
- Musarra, G.; Caramazza, P.; Turpin, A.; Lyons, A.; Higham, C.F.; Murray-Smith, R.; Faccio, D. Detection, identification, and tracking of objects hidden from view with neural networks. In Proceedings of the Conference on Advanced Photon Counting Techniques XIII, Baltimore, MD, USA, 14–18 April 2019; SPIE: Bellingham, WA, USA, 2019; Volume 10978. [Google Scholar] [CrossRef]
- Tu, M.; Yan, Q.R.; Zheng, Y.J.; Xiong, X.C.; Zou, Q.; Dai, Q.L.; Lu, X.Q. Poisson Noise Suppression for Single- Photon Non- Line-of- Sight Imaging Based on Deep Learning. Laser Optoelectron. Prog. 2023, 60, 8. [Google Scholar] [CrossRef]
- Buttafava, M.; Zeman, J.; Tosi, A.; Eliceiri, K.; Velten, A. Non-line-of-sight imaging using a time-gated single photon avalanche diode. Opt. Express 2015, 23, 20997–21011. [Google Scholar] [CrossRef]
- O’Toole, M.; Heide, F.; Lindell, D.B.; Zang, K.; Diamond, S.; Wetzstein, G. Reconstructing transient images from single-photon sensors. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1539–1547. [Google Scholar]
- Royo, D.; Garcia, J.; Luesia-Lahoz, P.; Marco, J.; Gutierrez, D.; Muñoz, A.; Jarabo, A. Non-Line-of-Sight Transient Rendering. In Proceedings of the SIGGRAPH Conference, Vancouver, BC, Canada, 7–11 August 2022; Association for Computing Machinery: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Tan, J.J.; Su, X.Q.; Wang, K.D.; Wu, J.Y. Modeling and simulation analysis of a non-line-of-sight infrared laser imaging system. In Proceedings of the 4th International Conference on Photonics and Optical Engineering, Xi’an, China, 14–17 October 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11761. [Google Scholar] [CrossRef]
- Tan, J.J.; Su, X.Q.; Wu, J.Y.; Wei, Z.Q. Simulation of NLOS (non-line-of-sight) 3D imaging system. In Proceedings of the Annual Conference of the Chinese-Society-for-Optical-Engineering (CSOE) on Applied Optics and Photonics China (AOPC)—Laser Components, Systems, and Applications, Beijing, China, 4–6 June 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10457. [Google Scholar] [CrossRef]
- Zhu, W.H.; Tan, J.J.; Ma, C.W.; Su, X.Q. Simulation of non-line-of-sight imaging system based on the light-cone transform. In Proceedings of the 4th International Conference on Photonics and Optical Engineering, Xi’an, China, 14–17 October 2020; SPIE: Bellingham, WA, USA, 2021; Volume 11761. [Google Scholar] [CrossRef]
- Scholes, S.; Mora-Martín, G.; Zhu, F.; Gyongy, I.; Soan, P.; Leach, J. Fundamental limits to depth imaging with single-photon detector array sensors. Sci. Rep. 2023, 13, 176. [Google Scholar] [CrossRef] [PubMed]
- Velten, A.; Willwacher, T.; Gupta, O.; Veeraraghavan, A.; Bawendi, M.G.; Raskar, R. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 2012, 3, 745. [Google Scholar] [CrossRef]
- Velten, A.; Wu, D.; Jarabo, A.; Masia, B.; Barsi, C.; Joshi, C.; Lawson, E.; Bawendi, M.; Gutierrez, D.; Raskar, R. Femto-photography: Capturing and visualizing the propagation of light. ACM Trans. Graph. (ToG) 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Henderson, R.K.; Johnston, N.; Chen, H.; Li, D.D.U.; Hungerford, G.; Hirsch, R.; McLoskey, D.; Yip, P.; Birch, D.J. A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology. In Proceedings of the ESSCIRC 2018-IEEE 44th European Solid State Circuits Conference (ESSCIRC), Dresden, Germany, 3–6 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 54–57. [Google Scholar]
- Henderson, R.K.; Johnston, N.; Della Rocca, F.M.; Chen, H.; Li, D.D.U.; Hungerford, G.; Hirsch, R.; Mcloskey, D.; Yip, P.; Birch, D.J. A 192x128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology. IEEE J. Solid-State Circuits 2019, 54, 1907–1916. [Google Scholar] [CrossRef]
- Hutchings, S.W.; Johnston, N.; Gyongy, I.; Al Abbas, T.; Dutton, N.A.; Tyler, M.; Chan, S.; Leach, J.; Henderson, R.K. A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging. IEEE J. Solid-State Circuits 2019, 54, 2947–2956. [Google Scholar] [CrossRef]
- Gyongy, I.; Martin, G.M.; Turpin, A.; Ruget, A.; Halimi, A.; Henderson, R.; Leach, J. High-speed vision with a 3D-stacked SPAD image sensor. In Proceedings of the Advanced Photon Counting Techniques XV, Online Only, 12–17 April 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11721, p. 1172105. [Google Scholar]
- Gyongy, I.; Erdogan, A.T.; Dutton, N.A.; Martín, G.M.; Gorman, A.; Mai, H.; Della Rocca, F.M.; Henderson, R.K. A Direct Time-of-flight Image Sensor with in-pixel Surface Detection and Dynamicc Vision. IEEE J. Sel. Top. Quantum Electron. 2023, 30, 3800111. [Google Scholar]
- Taylor, G.G.; McCarthy, A.; Korzh, B.; Beyer, A.D.; Morozov, D.; Briggs, R.M.; Allmaras, J.P.; Bumble, B.; Shaw, M.D.; Hadfield, R.H.; et al. Long-range depth imaging with 13ps temporal resolution using a superconducting nanowire singlephoton detector. In Proceedings of the CLEO: Science and Innovations, Washington, DC, USA, 10–15 May 2020; Optical Society of America: Washington, DC, USA, 2020; p. SM2M-6. [Google Scholar]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical considerations and nomenclature for reflectance. NBS Monogr. 1992, 160, 4. [Google Scholar]
- Laurenzis, M.; Klein, J.; Bacher, E.; Metzger, N. Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths. Opt. Lett. 2015, 40, 4815–4818. [Google Scholar] [CrossRef]
- Caramazza, P.; Boccolini, A.; Buschek, D.; Hullin, M.; Higham, C.F.; Henderson, R.; Murray-Smith, R.; Faccio, D. Neural network identification of people hidden from view with a single-pixel, single-photon detector. Sci. Rep. 2018, 8, 11945. [Google Scholar] [CrossRef]
- Scholes, S.; Wade, E.; McCarthy, A.; Garcia, J.; Tobin, R.; Soan, P.; Buller, G.; Leach, J. A robust framework for modelling long range dToF SPAD Lidar performance. Soon 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholes, S.; Leach, J. Path Tracing-Inspired Modeling of Non-Line-of-Sight SPAD Data. Sensors 2024, 24, 6522. https://doi.org/10.3390/s24206522
Scholes S, Leach J. Path Tracing-Inspired Modeling of Non-Line-of-Sight SPAD Data. Sensors. 2024; 24(20):6522. https://doi.org/10.3390/s24206522
Chicago/Turabian StyleScholes, Stirling, and Jonathan Leach. 2024. "Path Tracing-Inspired Modeling of Non-Line-of-Sight SPAD Data" Sensors 24, no. 20: 6522. https://doi.org/10.3390/s24206522
APA StyleScholes, S., & Leach, J. (2024). Path Tracing-Inspired Modeling of Non-Line-of-Sight SPAD Data. Sensors, 24(20), 6522. https://doi.org/10.3390/s24206522